Analytical and Bioanalytical Chemistry

, Volume 399, Issue 10, pp 3375–3385 | Cite as

Molecularly imprinted beads with double thermosensitive gates for selective recognition of proteins

  • Lei Qin
  • Xi-Wen He
  • Xia Yuan
  • Wen-You LiEmail author
  • Yu-Kui ZhangEmail author
Original Paper


A new approach is reported on the use of poly(N-isopropylacrylamide) (PNIPAM)-coated molecularly imprinted beads (coated MIP beads) for controlling the release of protein. The coated MIP beads were composed of double layers, an internal thermosensitive lysozyme-imprinted layer, and an external PNIPAM layer. The coated MIP beads were prepared by two-step surface-initiated living-radical polymerization (SIP). In this systemic study, the coated MIP beads had good selectivity to the template protein (lysozyme) and temperature stimulus-responsive behavior, both of which were superior to those of MIP beads having a layer of thermosensitive lysozyme-imprinted polymer only. Using the coated MIP beads, reference proteins and the template lysozyme could be released separately at 38 °C and at 23 °C. The corresponding coated non-imprinted beads (coated NIP beads) did not have such double thermosensitive “gates” with specific selectivity for a particular protein. The proposed smart controlled imprinted system for protein is attractive for chemical carriers, drug-delivery system, and sensors.


Schematic illustration of the coated MIP beads with thermosensitive swelling/collapse phase transitions for selective adsorption of proteins


Thermosensitive Molecularly imprinted bead Protein 



We would like to thank the National Basic Research Program of China (973 Program, nos. 2007CB914100 and 2011CB707703) and the National Nature Science Foundation of China (nos. 20875049 and 21075069).

Supplementary material

216_2011_4736_MOESM1_ESM.pdf (88 kb)
ESM 1 (PDF 88.1 kb)


  1. 1.
    Wulff G (1995) Angew Chem Int Ed Engl 34:1812–1832CrossRefGoogle Scholar
  2. 2.
    Haupt K, Mosbach K (2000) Chem Rev 100:2495–2504CrossRefGoogle Scholar
  3. 3.
    Mallik S, Plunkett SD, Dhal PK, Johnson RD, Pack D, Shnek D, Arnold FH (1994) New J Chem 18:299–304Google Scholar
  4. 4.
    Ye L, Mosbach K (2001) J Am Chem Soc 123:2901–2902CrossRefGoogle Scholar
  5. 5.
    Shiomi T, Matsui M, Mizukami F, Sakaguchi K (2005) Biomaterials 26:5564–5571CrossRefGoogle Scholar
  6. 6.
    Turner NW, Jeans CW, Brain KR, Allender CJ, Hlady V, Britt DW (2006) Biotechnol Prog 22:1474–1489Google Scholar
  7. 7.
    Bossi A, Bonini F, Turner APF, Piletsky SA (2007) Biosens Bioelectron 22:1131–1137CrossRefGoogle Scholar
  8. 8.
    Bergmann NM, Peppas NA (2008) Prog Polym Sci 33:271–288CrossRefGoogle Scholar
  9. 9.
    Ge Y, Turner APF (2008) Trends Biotechnol 26:218–224CrossRefGoogle Scholar
  10. 10.
    Nishino H, Huang CS, Shea KJ (2006) Angew Chem Int Ed 45:2392–2396CrossRefGoogle Scholar
  11. 11.
    Li Y, Yang HH, You QH, Zhuang ZX, Wang XR (2006) Anal Chem 78:317–320CrossRefGoogle Scholar
  12. 12.
    Miyata T, Jige M, Nakaminami T, Uragami T (2006) Proc Natl Acad Sci 103:1190–1193CrossRefGoogle Scholar
  13. 13.
    Lin HY, Rick J, Chou TC (2007) Biosens Bioelectron 22:3293–3301CrossRefGoogle Scholar
  14. 14.
    Hansen DE (2007) Biomaterials 28:4178–4191CrossRefGoogle Scholar
  15. 15.
    Takeuchi T, Hishiya T (2008) Org Biomol Chem 6:2459–2467CrossRefGoogle Scholar
  16. 16.
    Sellergren B (2000) Angew Chem Int Ed 39:1031–1037CrossRefGoogle Scholar
  17. 17.
    Hu SG, Li L, He XW (2005) J Chromatogr A 1062:31–37CrossRefGoogle Scholar
  18. 18.
    Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) J Mol Recognit 19:106–180CrossRefGoogle Scholar
  19. 19.
    Yasumasa K, Ryuichi N, Hiroaki T (2003) Angew Chem Int Ed 42:3014–3016CrossRefGoogle Scholar
  20. 20.
    Qiu Y, Park K (2001) Adv Drug Deliv Rev 53:321–339CrossRefGoogle Scholar
  21. 21.
    Alarcon C, De las H, Pennadam S, Alexander C (2005) Chem Soc Rev 34:276–285CrossRefGoogle Scholar
  22. 22.
    Miyata T, Jikihara A, Nakamae K, Hoffman AS (2004) J Biomater Sci Polym Ed 15:1085–1098CrossRefGoogle Scholar
  23. 23.
    Miyata T, Asami N, Uragami T (1999) Macromolecules 32:2082–2084CrossRefGoogle Scholar
  24. 24.
    Hiratani H, Alvarez-Lorenzo C, Chuang J, Guney O, Grosberg AY, Tanaka T (2001) Langmuir 17:4431–4436CrossRefGoogle Scholar
  25. 25.
    Alvarez-Lorenzo C, Guney O, Oya T, Sakai Y, Kobayashi M, Enoki T, Takeoka Y, Ishibashi T, Kuroda K, Tanaka K, Wang GQ, Grosberg AY, Masamune S, Tanaka T (2001) J Chem Phys 114:2812–2816CrossRefGoogle Scholar
  26. 26.
    Demirel G, Özçetin G, Turan E, Çaykara T (2005) Macromol Biosci 5:1032–1037CrossRefGoogle Scholar
  27. 27.
    Chen ZY, Hua ZD, Xu L, Huang Y, Zhao MP, Li YZ (2008) J Mol Recognit 21:71–77CrossRefGoogle Scholar
  28. 28.
    Hua ZD, Chen ZY, Li YZ, Zhao MP (2008) Langmuir 24:5773–5780CrossRefGoogle Scholar
  29. 29.
    Bergmann NM, Peppas NA (2003) Trans Soc Biomater 29:457–458Google Scholar
  30. 30.
    Miyata T, Jige M, Nakaminami T, Uragami T (2006) Proc Natl Acad Sci USA 103:1190–1193CrossRefGoogle Scholar
  31. 31.
    Qin L, He XW, Zhang W, Li WY, Zhang YK (2009) J Chromatogr A 1216:807–814CrossRefGoogle Scholar
  32. 32.
    Otsu T, Matsumoto A (1998) Adv Polym Sci 136:75–137CrossRefGoogle Scholar
  33. 33.
    Su SF, Zhang M, Li BL, Zhang HY, Dong XC (2008) Talanta 76:1141–1146CrossRefGoogle Scholar
  34. 34.
    Takehisa M, Shoji O (2005) Langmuir 21:9660–9665CrossRefGoogle Scholar
  35. 35.
    Kawaguchi H, Fujimoto K, Mizuhara Y (1992) Colloid Polym Sci 270:53–57CrossRefGoogle Scholar
  36. 36.
    Fujimoto K, Mizuhara Y, Tamura N, Kawaguchi H (1993) J Intell Mater Syst Struct 4:184–189CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of ChemistryNankai UniversityTianjinChina
  2. 2.National Chromatographic Research and Analysis Center, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations