Advertisement

Analytical and Bioanalytical Chemistry

, Volume 400, Issue 8, pp 2439–2447 | Cite as

Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives

  • Bernhard Zachhuber
  • Georg Ramer
  • Alison Hobro
  • Engelene t. H. Chrysostom
  • Bernhard Lendl
Original Paper

Abstract

A pulsed stand-off Raman system has been built and optimised for the qualitative and quantitative analysis of inorganic and organic samples including explosives. The system consists of a frequency doubled Q-switched Nd:YAG laser (532 nm, 10 Hz, 4.4 ns pulse length), aligned coaxially with a 6″ Schmidt–Cassegrain telescope for the collection of Raman scattered light. The telescope was coupled via a fibre optic bundle to an Acton standard series SP-2750 spectrograph with a PI-MAX 1024RB intensified CCD camera equipped with a 500-ps gating option for detection. Gating proved to be essential for achieving high signal-to-noise ratios in the recorded stand-off Raman spectra. In some cases, gating also allowed suppression of disturbing fluorescence signals. For the first time, quantitative analysis of stand-off Raman spectra was performed using both univariate and multivariate methods of data analysis. To correct for possible variation in instrumental parameters, the nitrogen band of ambient air was used as an internal standard. For the univariate method, stand-off Raman spectra obtained at a distance of 9 m on sodium chloride pellets containing varying amounts of ammonium nitrate (0–100%) were used. For the multivariate quantification of ternary xylene mixtures (0–100%), stand-off spectra at a distance of 5 m were used. The univariate calibration of ammonium nitrate yielded R 2 values of 0.992, and the multivariate quantitative analysis yielded root mean square errors of prediction of 2.26%, 1.97% and 1.07% for o-, m- and p-xylene, respectively. Stand-off Raman spectra obtained at a distance of 10 m yielded a detection limit of 174 μg for NaClO3. Furthermore, to assess the applicability of stand-off Raman spectroscopy for explosives detection in “real-world” scenarios, their detection on different background materials (nylon, polyethylene and part of a car body) and in the presence of interferents (motor oil, fuel oil and soap) at a distance of 20 m was also investigated.

Figure

Stand-off Raman spectroscopy

Keywords

Raman Stand-off Quantification Remote Explosive 

Notes

Acknowledgements

The research leading to these results has received funding from the European Community's Seventh Framework Program (FP7/2007-2013) under Grant Agreement No. 218037 and from the Austrian Research Promotion Agency (FFG) under the Research Studios Austria program.

References

  1. 1.
    Manz A, Harrison JD, Verpoorte EMJ, Fettinger JC, Luedi H, Widmer HM (1991) Chimia 45:103Google Scholar
  2. 2.
    Ramsey JM (1999) Nat Biotechnol 17:1061CrossRefGoogle Scholar
  3. 3.
    Stöckle RM, Suh YD, Deckert V, Zenobi R (1999) Chem Phys Lett 318:131CrossRefGoogle Scholar
  4. 4.
    Wang L, Kowalik J, Mizaikoff B, Kranz C (2010) Anal Chem 82:3139CrossRefGoogle Scholar
  5. 5.
    Smith E, Dent G (2005) Modern Raman spectroscopy a practical approach. Wiley, ChichesterGoogle Scholar
  6. 6.
    Lewis IR, Daniel NW Jr, Chaffin NC, Griffiths PR, Tungol MW (1995) Spectrochim Acta Part A Mol Biomol Spectrosc 51:12CrossRefGoogle Scholar
  7. 7.
    Sharma SK, Lucey PG, Ghosh M, Hubble HW, Horton KA (2003) Spectrochim Acta Part A Mol Biomol Spectrosc 59:2391CrossRefGoogle Scholar
  8. 8.
    Misra AK, Sharma SK, Chio CH, Lucey PG, Lienert B (2005) Spectrochim Acta Part A Mol Biomol Spectrosc 61:2281CrossRefGoogle Scholar
  9. 9.
    Cooney J (1965) Proceedings of the symposium on electromagnetic sensing of the earth from satellites. Polytechnic P, Brooklyn, New YorkGoogle Scholar
  10. 10.
    Leonard DA (1967) Nature 216:142CrossRefGoogle Scholar
  11. 11.
    Angel SM, Kulp TJ, Vess TM (1992) Appl Spectrosc 46:1085CrossRefGoogle Scholar
  12. 12.
    Sharma SK, Misra AK, Lucey PG, Angel SM, McKay CP (2006) Appl Spectrosc 60:871CrossRefGoogle Scholar
  13. 13.
    Sharma SK, Misra AK, Singh UN (2008) Proc of SPIE 7153:715307-1Google Scholar
  14. 14.
    Sharma SK, Misra AK, Clegg SM, Barefield JE, Wiens RC, Acosta T (2010) Phil Trans R Soc A 68:3167CrossRefGoogle Scholar
  15. 15.
    Klein V, Popp J, Tarcea N, Schmitt M, Kiefer W, Hofer S, Stuffler T, Hilchenbach M, Doyle D, Dieckmann M (2004) J Raman Spectrosc 35:433CrossRefGoogle Scholar
  16. 16.
    Vandenabeele P, Castro K, Hargreaves M, Moens L, Madariaga JM, Edwards HGM (2007) Anal Chim Acta 588:108CrossRefGoogle Scholar
  17. 17.
    Thorley FC, Baldwin KJ, Lee DC, Batchelder DN (2006) J Raman Spectrosc 37:335CrossRefGoogle Scholar
  18. 18.
    Pettersson A, Johansson I, Wallin S, Nordberg M, Östmark H (2009) Propellants Explos Pyrotech 34:297CrossRefGoogle Scholar
  19. 19.
    Gaft M, Nagi L (2008) Opt Mater 30:1739CrossRefGoogle Scholar
  20. 20.
    Ramírez-Cedeño ML, Ortiz-Rivera W, Pacheco-Londoño LC, Hernández-Rivera SP (2010) IEEE Sens J 10:693CrossRefGoogle Scholar
  21. 21.
    Pettersson A, Wallin S, Östmark H, Ehlerding A, Johansson I, Nordberg M, Ellis H, Al-Khalili A (2010) Proc SPIE 7664:76641K-1Google Scholar
  22. 22.
    Hobro AJ, Lendl B (2009) Trends Anal Chem 28:1235CrossRefGoogle Scholar
  23. 23.
    Bauer C, Sharma AK, Willer U, Burgmeier J, Braunschweig B, Schade W, Blaser S, Hvozdara L, Müller A, Holl G (2008) Appl Phys B: Lasers Opt 92:327CrossRefGoogle Scholar
  24. 24.
    Mordmueller M, Bohling C, John A, Schade W (2009) Proc SPIE 7484:74840FCrossRefGoogle Scholar
  25. 25.
    Moros J, Lorenzo JA, Lucena P, Tobaria LM, Laserna JJ (2010) Anal Chem 82:1389CrossRefGoogle Scholar
  26. 26.
    Stamm RF (1945) Anal Chem 17:318Google Scholar
  27. 27.
    Pelletier MJ (2003) Appl Spectrosc 57:20ACrossRefGoogle Scholar
  28. 28.
    Aarnoutse PJ, Westerhuis JA (2005) Anal Chem 77:1228CrossRefGoogle Scholar
  29. 29.
    EU FP7-project OPTIX. Available at http://www.fp7-optix.eu. Accessed 9 Nov 2010
  30. 30.
    Zachhuber B, Ramer G, Hobro AJ, Lendl B (2010) Proc SPIE 7838:78380FCrossRefGoogle Scholar
  31. 31.
    Wallin S, Pettersson A, Östmark H, Hobro A (2009) Anal Bioanal Chem 395:259CrossRefGoogle Scholar
  32. 32.
    Mocak J, Bond AM, Mitchell S, Scollary G (1997) Pure Appl Chern 69:297CrossRefGoogle Scholar
  33. 33.
    Cooper JB, Flecher PE, Vess TM, Welch WT (1995) Appl Spectrosc 49:586CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Bernhard Zachhuber
    • 1
  • Georg Ramer
    • 1
  • Alison Hobro
    • 1
  • Engelene t. H. Chrysostom
    • 1
  • Bernhard Lendl
    • 1
  1. 1.Institute of Chemical Technologies and AnalyticsVienna University of TechnologyViennaAustria

Personalised recommendations