Advertisement

Analytical and Bioanalytical Chemistry

, Volume 400, Issue 7, pp 1853–1863 | Cite as

Triacylglycerol/phospholipid molecular species profiling of fatty livers and regenerated non-fatty livers in cystathionine beta-synthase-deficient mice, an animal model for homocysteinemia/homocystinuria

  • Kazutaka Ikeda
  • Akiko Kubo
  • Noriyuki Akahoshi
  • Hidenori Yamada
  • Naoya Miura
  • Takako Hishiki
  • Yoshiko Nagahata
  • Tomomi Matsuura
  • Makoto Suematsu
  • Ryo Taguchi
  • Isao Ishii
Original Paper

Abstract

Fatty liver is one of the typical manifestations in homocysteinemia/homocystinuria patients and their genetic animal model, mice lacking cystathionine β-synthase (Cbs −/−). The vast majority of Cbs −/− die within 4 weeks after birth via yet unknown mechanisms, whereas a small portion survive to adulthood, escaping fatty degeneration of the liver during lactation periods, through regeneration. To investigate the molecular basis of such fatty changes, we analyzed lipid components in fatty livers of 2-week-old Cbs −/− and regenerated non-fatty livers of 8-week-old Cbs −/− survivors using a chip-based nanoESI (electrospray ionization)-MS system, which allows quantitative detection of triacylglycerol/phospholipid molecular species. Hepatic levels of all major triacylglycerol species were much higher in Cbs −/− than in wild-type mice at 2 weeks, although not at 8 weeks. Levels of some phospholipid species were either up- or downregulated in 2-week-old Cbs −/−; e.g. saturated (16:0 and 18:0) or mono-unsaturated (16:1 and 18:1) fatty acids-containing phosphatidylcholine/phosphatidylethanolamine species were upregulated, while poly-unsaturated fatty acids-containing phosphatidylcholine (18:2–18:2 and 18:2–20:5), phosphatidylethanolamine (18:1–20:4), and phosphatidylinositol (18:0–20:4) were downregulated. Capillary electrophoresis-MS analysis identified high-level accumulation of S-adenosylmethionine and S-adenosylhomocysteine in fatty livers of 2-week-old Cbs −/− but much less in non-fatty livers of 8-week-old Cbs −/−. Although hepatic S-adenosylmethionine/S-adenosylhomocysteine ratios were comparable between 2-week-old Cbs −/− and wild-type, global protein arginine methylation was disturbed in fatty livers of Cbs −/−. Our results suggest that cellular signaling mediated by altered phospholipid contents might be involved in pathogenesis of fatty liver in Cbs −/–.

Keywords

Capillary electrophoresis Hepatic steatosis Methylation NanoESI-MS Neutral loss scanning Precursor ion scanning 

Notes

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research (no. 22590292 to I.I. and no. 22790219 to N.A.) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan; research grants for Core Research for Evolutional Science and Technology (CREST) Program (to R.T.) and ERATO Suematsu Gas Biology Project (to M.S.) from JST; and research grants from Keio University (to I.I.). CE-MS analysis was supported by Research and Development of the Next-Generation Integrated Simulation of Living Matter, a part of the Development and Use of the Next-Generation Supercomputer Project of the MEXT.

References

  1. 1.
    Robinson K (2000) Homocysteine, B vitamins, and risk of cardiovascular disease. Heart 83:127–130CrossRefGoogle Scholar
  2. 2.
    Mudd SH, Levy HL, Kraus JP (2001) Disorders of transsulfuration. In: Scriver SR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. MaGraw-Hill, New YorkGoogle Scholar
  3. 3.
    Herrmann W, Knapp JP (2002) Hyperhomocysteinemia: a new risk factor for degenerative diseases. Clin Lab 48:471–481Google Scholar
  4. 4.
    Dayal S, Bottiglieri T, Arning E, Maeda N, Malinow MR, Sigmund CD, Heistad DD, Faraci FM, Lentz SR (2001) Endothelial dysfunction and elevation of S-adenosylhomocysteine in cystathionine beta-synthase-deficient mice. Circ Res 88:1203–1209CrossRefGoogle Scholar
  5. 5.
    Austin RC, Lentz SR, Werstuck GH (2004) Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ 11(Suppl 1):S56–S64CrossRefGoogle Scholar
  6. 6.
    Eberhardt RT, Forgione MA, Cap A, Leopold JA, Rudd MA, Trolliet M, Heydrick S, Stark R, Klings ES, Moldovan NI, Yaghoubi M, Goldschmidt-Clermont PJ, Farber HW, Cohen R, Loscalzo J (2000) Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemia. J Clin Invest 106:483–491CrossRefGoogle Scholar
  7. 7.
    Gibson JB, Carson NA, Neill DW (1964) Pathological findings in homocystinuria. J Clin Pathol 17:427–437CrossRefGoogle Scholar
  8. 8.
    Watanabe M, Osada J, Aratani Y, Kluckman K, Reddick R, Malinow MR, Maeda N (1995) Mice deficient in cystathionine beta-synthase: animal models for mild and severe homocyst(e)inemia. Proc Natl Acad Sci USA 92:1585–1589CrossRefGoogle Scholar
  9. 9.
    Wang H, Jiang X, Yang F, Gaubatz JW, Ma L, Magera MJ, Yang X, Berger PB, Durante W, Pownall HJ, Schafer AI (2003) Hyperhomocysteinemia accelerates atherosclerosis in cystathionine beta-synthase and apolipoprotein E double knock-out mice with and without dietary perturbation. Blood 101:3901–3907CrossRefGoogle Scholar
  10. 10.
    Namekata K, Enokido Y, Ishii I, Nagai Y, Harada T, Kimura H (2004) Abnormal lipid metabolism in cystathionine beta-synthase-deficient mice, an animal model for hyperhomocysteinemia. J Biol Chem 279:52961–52969CrossRefGoogle Scholar
  11. 11.
    Akahoshi N, Kobayashi C, Ishizaki Y, Izumi T, Himi T, Suematsu M, Ishii I (2008) Genetic background conversion ameliorates semi-lethality and permits behavioral analyses in cystathionine beta-synthase-deficient mice, an animal model for hyperhomocysteinemia. Hum Mol Genet 17:1994–2005CrossRefGoogle Scholar
  12. 12.
    Ishii I, Akahoshi N, Yamada H, Nakano S, Izumi T, Suematsu M (2010) Cystathionine gamma-lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J Biol Chem 285:26358–26368CrossRefGoogle Scholar
  13. 13.
    Ikeda K, Mutoh M, Teraoka N, Nakanishi H, Wakabayashi K, Taguchi R (2011) Increase of oxidant-related triglycerides and phosphatidylcholines in serum and small intestinal mucosa during development of intestinal polyp formation in Min mice. Cancer Sci 102:79–87CrossRefGoogle Scholar
  14. 14.
    Taguchi R, Houjou T, Nakanishi H, Yamazaki T, Ishida M, Imagawa M, Shimizu T (2005) Focused lipidomics by tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 823:26–36CrossRefGoogle Scholar
  15. 15.
    Mudd SH, Finkelstein JD, Refsum H, Ueland PM, Malinow MR, Lentz SR, Jacobsen DW, Brattstrom L, Wilcken B, Wilcken DE, Blom HJ, Stabler SP, Allen RH, Selhub J, Rosenberg IH (2000) Homocysteine and its disulfide derivatives: a suggested consensus terminology. Arterioscler Thromb Vasc Biol 20:1704–1706Google Scholar
  16. 16.
    Matsuyama N, Yamaguchi M, Toyosato M, Takayama M, Mizuno K (2001) New enzymatic colorimetric assay for total homocysteine. Clin Chem 47:2155–2157Google Scholar
  17. 17.
    Endo J, Sano M, Katayama T, Hishiki T, Shinmura K, Morizane S, Matsuhashi T, Katsumata Y, Zhang Y, Ito H, Nagahata Y, Marchitti S, Nishimaki K, Wolf AM, Nakanishi H, Hattori F, Vasiliou V, Adachi T, Ohsawa I, Taguchi R, Hirabayashi Y, Ohta S, Suematsu M, Ogawa S, Fukuda K (2009) Metabolic remodeling induced by mitochondrial aldehyde stress stimulates tolerance to oxidative stress in the heart. Circ Res 105:1118–1127CrossRefGoogle Scholar
  18. 18.
    Robert K, Nehme J, Bourdon E, Pivert G, Friguet B, Delcayre C, Delabar JM, Janel N (2005) Cystathionine beta synthase deficiency promotes oxidative stress, fibrosis, and steatosis in mice liver. Gastroenterology 128:1405–1415CrossRefGoogle Scholar
  19. 19.
    Robert K, Maurin N, Ledru A, Delabar J, Janel N (2004) Hyperkeratosis in cystathionine beta synthase-deficient mice: an animal model of hyperhomocysteinemia. Anat Rec A Discov Mol Cell Evol Biol 280:1072–1076CrossRefGoogle Scholar
  20. 20.
    Jacobs RL, Zhao Y, Koonen DP, Sletten T, Su B, Lingrell S, Cao G, Peake DA, Kuo MS, Proctor SD, Kennedy BP, Dyck JR, Vance DE (2010) Impaired de novo choline synthesis explains why phosphatidylethanolamine N-methyltransferase-deficient mice are protected from diet-induced obesity. J Biol Chem 285:22403–22413CrossRefGoogle Scholar
  21. 21.
    Ikeda K, Oike Y, Shimizu T, Taguchi R (2009) Global analysis of triacylglycerols including oxidized molecular species by reverse-phase high resolution LC/ESI-QTOF MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 877:2639–2647CrossRefGoogle Scholar
  22. 22.
    Taguchi R, Ishikawa M (2010) Precise and global identification of phospholipid molecular species by an Orbitrap mass spectrometer and automated search engine Lipid Search. J Chromatogr A 1217:4229–4239CrossRefGoogle Scholar
  23. 23.
    Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577CrossRefGoogle Scholar
  24. 24.
    Soga T, Baran R, Suematsu M, Ueno Y, Ikeda S, Sakurakawa T, Kakazu Y, Ishikawa T, Robert M, Nishioka T, Tomita M (2006) Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem 281:16768–16776CrossRefGoogle Scholar
  25. 25.
    Hattori K, Kajimura M, Hishiki T, Nakanishi T, Kubo A, Nagahata Y, Ohmura M, Yachie-Kinoshita A, Matsuura T, Morikawa T, Nakamura T, Setou M, Suematsu M (2010) Paradoxical ATP elevation in ischemic penumbra revealed by quantitative imaging mass spectrometry. Antioxid Redox Signal 13:1157–1167CrossRefGoogle Scholar
  26. 26.
    Choumenkovitch SF, Selhub J, Bagley PJ, Maeda N, Nadeau MR, Smith DE, Choi SW (2002) In the cystathionine beta-synthase knockout mouse, elevations in total plasma homocysteine increase tissue S-adenosylhomocysteine, but responses of S-adenosylmethionine and DNA methylation are tissue specific. J Nutr 132:2157–2160Google Scholar
  27. 27.
    DeLong CJ, Shen YJ, Thomas MJ, Cui Z (1999) Molecular distinction of phosphatidylcholine synthesis between the CDP-choline pathway and phosphatidylethanolamine methylation pathway. J Biol Chem 274:29683–29688CrossRefGoogle Scholar
  28. 28.
    Ishii I, Fukushima N, Ye X, Chun J (2004) Lysophospholipid receptors: signaling and biology. Annu Rev Biochem 73:321–354CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Kazutaka Ikeda
    • 1
  • Akiko Kubo
    • 2
  • Noriyuki Akahoshi
    • 2
    • 3
  • Hidenori Yamada
    • 2
  • Naoya Miura
    • 4
  • Takako Hishiki
    • 2
  • Yoshiko Nagahata
    • 2
    • 3
  • Tomomi Matsuura
    • 2
    • 3
  • Makoto Suematsu
    • 2
    • 3
  • Ryo Taguchi
    • 1
    • 5
  • Isao Ishii
    • 2
  1. 1.Department of Metabolome, Graduate School of MedicineThe University of TokyoTokyoJapan
  2. 2.Department of Biochemistry, School of MedicineKeio UniversityShinjukuJapan
  3. 3.Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO)Suematsu Gas Biology ProjectTokyoJapan
  4. 4.Department of Biochemistry, Faculty of PharmacyKeio UniversityTokyoJapan
  5. 5.Department of Biomedical Sciences, College of Life and Health SciencesChubu UniversityAichiJapan

Personalised recommendations