Advertisement

Analytical and Bioanalytical Chemistry

, Volume 400, Issue 3, pp 649–657 | Cite as

The effect of bias-temperature stress on Na+ incorporation into thin insulating films

  • Stefan Krivec
  • Michael Buchmayr
  • Thomas Detzel
  • Till Froemling
  • Juergen Fleig
  • Herbert Hutter
Original Paper

Abstract

The action of Na+ incorporation into thin insulating films and transport therein under influence of a bias voltage and temperature (BT stress) is the subject of this work. Deposited onto highly n-doped Si wafers, the insulators get BT stressed and subsequently investigated by means of time-of-flight–secondary ion mass spectrometry (ToF-SIMS). A thin PMMA film, spin-coated onto the insulator, serves as host matrix for a defined amount of Na+, provided via sodium triflate. Combining BT stress and ToF-SIMS depth profiling enables the unambiguous detection of Na+, incorporated into the insulating material. The insulators of interest vary in their nitride content: SiO2, SiOxNy, and Si3N4. For SiO2, it is shown that once a threshold BT stress is exceeded, Na+ gets quantitatively incorporated from PMMA into the underlying insulator, finally accumulating at the SiO2/Si interface. A quantitative assessment by combination of Butler–Volmer kinetics with hopping dynamics reveals activation energies of E a = 1.55 − 2.04 eV for Na+ transport in SiO2 with varying thickness. On the other hand, SiOxNy and Si3N4 films show a different Na+ incorporation characteristic in this type of experiment, which can be explained by the higher coordination of nitrogen and hence the reduced Na+ permeability within these insulators.

Keywords

Mobile ions Bias-temperature stress ToF-SIMS Barrier layers 

Notes

Acknowledgements

This work was jointly funded by the Federal Ministry of Economics and Labor of the Republic of Austria (contract 98.362/0112-C1/10/2005) and the Carinthian Economic Promotion Fund (KWF; contract 18911|13628|19100). The authors thank R. Grilz from Infineon Technologies Austria AG for production of the wafers. Furthermore, A. Limbeck (instrumental analytical chemistry group; TU Vienna) is acknowledged for conducting F-AAS measurements and A. Henriksson (inorganic chemistry division; TU Vienna) for the assistance in terms of ellipsometry.

References

  1. 1.
    Hefley PL, McPherson JW (1988) In: Annual Proceedings—Reliability Physics (Symposium), Monterey, CA, USA, pp 167–172Google Scholar
  2. 2.
    Snow EH, Grove AS, Deal BE, Sah CT (1965) J Appl Phys 36(5):1664–1673CrossRefGoogle Scholar
  3. 3.
    Yon E, Ko WH, Kuper AB (1966) IEEE Trans Electron Devices 13(2):276–280CrossRefGoogle Scholar
  4. 4.
    Osenbach JW, Voris SS (1988) J Appl Phys 63(9):4494–4500CrossRefGoogle Scholar
  5. 5.
    Pethe SA, Hadagali V, Dhere NG (2009) In: Delahoy AE, Eldada LA (eds) Proc SPIE, Vol. 7409, San Diego, CA, USA, pp 740911/1–740911/8Google Scholar
  6. 6.
    Anderson L, Parikh S, Nagalingam S, Haidinyak C (1995) In: International Integrated Reliability Workshop, Final Report, Stanford, CA, USA, pp 45–48Google Scholar
  7. 7.
    Niehuis E, Grehl T (2001) In: Vickerman JC, Briggs D (eds) ToF-SIMS surface analysis by mass spectrometry. IM Publications, Chichester, pp 753–778Google Scholar
  8. 8.
    Krivec S, Buchmayr M, Detzel T, Nelhiebel M, Hutter H (2010) Surf Interface Anal 42(6–7):886–890CrossRefGoogle Scholar
  9. 9.
    Krivec S, Detzel T, Buchmayr M, Hutter H (2010) Appl Surf Sci 257(1):25–32CrossRefGoogle Scholar
  10. 10.
    Moya AA, Castilla J, Horno J (1994) J Phys Chem 99(4):1292–1298CrossRefGoogle Scholar
  11. 11.
    Tsagarakis ED, Weppner W (2005) Ionics 11:240–247CrossRefGoogle Scholar
  12. 12.
    Roling B (2002) J Chem Phys 117(3):1320–1327CrossRefGoogle Scholar
  13. 13.
    Heuer A, Murugavel S, Roling B (2005) Phys Rev B: Cond Matter 72(17):174304/174301–174304/174307Google Scholar
  14. 14.
    Barton JJ (1996) J Non-Cryst Solids 203:280–285CrossRefGoogle Scholar
  15. 15.
    Hofstein SR (1967) IEEE Trans Electron Devices 14(11):749–759CrossRefGoogle Scholar
  16. 16.
    Neuhaus HJ, Day DR, Senturia SD (1985) J Electron Mat 14(3):379–404CrossRefGoogle Scholar
  17. 17.
    Yashima M, Ando Y, Tabira Y (2007) J Phys Chem B 111(14):3609–3613CrossRefGoogle Scholar
  18. 18.
    du Boulay D, Ishizawa N, Atake T, Streltsov V, Furuya K, Munakata F (2004) Acta Crystallogr B Struct Sci 60(9):388–405CrossRefGoogle Scholar
  19. 19.
    Galusek D, Riley FL, Riedel R (2001) J Am Ceram Soc 84(5):1164–1166CrossRefGoogle Scholar
  20. 20.
    Ibok E, Garg S, Ogle B (1996) In: Besmann TM, Allendorf MD, Robinson M, Ulrich RK (eds) 13th International Conference on Chemical Vapor Deposition, Los Angeles, CA, USA, pp 470–476Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Stefan Krivec
    • 1
    • 2
  • Michael Buchmayr
    • 3
  • Thomas Detzel
    • 3
  • Till Froemling
    • 2
  • Juergen Fleig
    • 2
  • Herbert Hutter
    • 2
  1. 1.KAI – Kompetenzzentrum Automobil- und Industrieelektronik GmbHVillachAustria
  2. 2.Institute of Chemical Technologies and AnalyticsVienna University of TechnologyViennaAustria
  3. 3.Infineon Technologies Austria AGVillachAustria

Personalised recommendations