Analytical and Bioanalytical Chemistry

, Volume 399, Issue 10, pp 3601–3611 | Cite as

Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis

  • A. SarmientoEmail author
  • M. Pérez-Alonso
  • M. Olivares
  • K. Castro
  • I. Martínez-Arkarazo
  • L. A. Fernández
  • J. M. Madariaga
Original Paper


Fourier transform infrared spectroscopy is a powerful analytical technique to study organic materials. However, in Cultural Heritage, since the sample under analysis is always a complicated matrix of several materials, data analysis performed through peak-by-peak comparisons of sample spectra with those of standard compounds is a tedious method that does not always provide good results. To overcome this problem, a chemometric model based on principal component analysis was developed to classify and identify organic binding media in artworks. The model allows the differentiation of five families of binders: drying oils, waxes, proteins, gums, and resins, taking into account the absorption bands in two characteristic spectral windows: C–H stretching and carbonyl band. This new methodology was applied in the characterization of binders in three kinds of artworks: papers of historical, archeological, and artistic value, easel paintings, and polychromed stone-based sculptures.


Analysis of the binder in a wallpaper of the 19th century by means of FTIR spectroscopy and chemometrics


Binder FTIR Artwork PCA 



A. Sarmiento is grateful to the Spanish Ministry of Education and Science for his FPU fellowship. This work was partially funded by the FP6 Project PAPERTECH (ref. INCO-CT-2004-509095) and by the Spanish MEC Project DILICO (ref. CTQ2005-09267-C02-01/PPQ). Authors would like to acknowledge Eleiz Museoa and Diputación Foral de Álava for letting them access to the real samples.


  1. 1.
    Colombini MP, Fuoco R, Giacomelli A, Muscatello B (1998) Characterization of proteinaceous binders in wall painting samples by Microwave-assisted acid hydrolysis and GC-MS determination of amino acids. Stud Conserv 43:33–41CrossRefGoogle Scholar
  2. 2.
    Ferreti M (1993) Scientific Investigations of Works of Art. ICCROM, RomaGoogle Scholar
  3. 3.
    Marinach C, Papillon MC, Pepe C (2004) Identification of binding media in works of art by gas chromatography-mass spectrometry. J Cult Herit 5:231–240CrossRefGoogle Scholar
  4. 4.
    Colombini MP, Andreotti A, Bonaduce I, Modugno F, Ribechini E (2010) Analytical Strategies for Characterizing Organic Paint Media Using Gas Chromatography/Mass Spectrometry. Acc Chem Res 43:715–727CrossRefGoogle Scholar
  5. 5.
    Bitossi G, Giorgi R, Mauro M, Salvadori B, Dei L (2005) Spectroscopic Techniques in Cultural Heritage: A Survey. Appl Spectrosc Rev 40:187–228CrossRefGoogle Scholar
  6. 6.
    Castro K, Vandenabeele P, Rodríguez-Laso MD, Moens L, Madariaga JM (2004) Micro-Raman analysis of coloured lithographs. Anal Bioanal Chem 379:674–683CrossRefGoogle Scholar
  7. 7.
    Castro K, Pessanha S, Proietti N, Princi E, Capitani D, Carvalho ML, Madariaga JM (2008) Non-invasive and non-destructive NMR, Raman and XRF analysis of a Blaeu coloured map from the seventeenth century. Anal Bioanal Chem 391:433–441CrossRefGoogle Scholar
  8. 8.
    Casadio F, Toniolo L (2001) The analysis of polychrome works of art:40 years of infrared spectroscopic investigations. J Cult Herit 2:71–78CrossRefGoogle Scholar
  9. 9.
    Newman R (1979) Some applications of infrared spectroscopy in the examination of painting materials. J Am Inst Conserv 19:42–62CrossRefGoogle Scholar
  10. 10.
    Pérez-Alonso M, Castro K, Alvarez M, Madariaga JM (2004) Scientific analysis versus restorer’s expertise for diagnosis prior to a restoration process: the case of Santa Maria Church (Hermo, Asturias, North of Spain). Anal Chim Acta 524:379–389CrossRefGoogle Scholar
  11. 11.
    Wang Q, Andrews KC (2002) Technological investigation of the decorative coatings on Yangshao pottery from Henan, China. Archaeometry 44:241–250CrossRefGoogle Scholar
  12. 12.
    Barone G, Crupi V, Galli S, Majolino D, Migliardo P, Venuti V (2003) Spectroscopic Investigation of Greek ceramic artifacts. J Mol Struct 651–653:449–458CrossRefGoogle Scholar
  13. 13.
    Garcia M, Vendrell M (2002) The glasses of the Transept’s Rosette of the Cathedral of Tarragona: Characterization, classification and decay. Bol Soc Esp Ceram V 41:217–224Google Scholar
  14. 14.
    Greiner E, Paluszkiewicz C, Stoch L (1999) Applying FTIR spectroscopy in the study of archeometric sensor glasses. J Mol Struct 511–512:199–204CrossRefGoogle Scholar
  15. 15.
    Mazzocchin GA, Agnoli F, Mazzocchin S (2003) Investigation of a roman age bulk pigment found in Vicenza. Anal Chim Acta 475:181–190CrossRefGoogle Scholar
  16. 16.
    Ballirano P, Maras A (2006) Mineralogical characterization of the blue pigment of Michelangelo’s fresco The Last Judgment. Am Mineral 91:997–1005CrossRefGoogle Scholar
  17. 17.
    Genestar C, Pons C (2005) Earth pigments in painting: characterization and differentiation by means of FT-IR spectroscopy and SEM-EDS microanalysis. Anal Bioanal Chem 382:269–274CrossRefGoogle Scholar
  18. 18.
    Bakr AM, Kawiak T, Paulikowski M, Sawlowicz Z (2005) Characterisation of 15thcentury red and black pastes used for wall decoration in the Qijmas El-Eshaqi mosque (Cairo, Egypt). J Cult Herit 6:351–356CrossRefGoogle Scholar
  19. 19.
    Ammannati N, Martellucci E, Presicce CP, Carruba AM (2001) The restoration of the Capitoline she wolf: Analysis of the bronze and of the corrosion patina by optical and scanning electron microscopes. Metallurgia Ital 93:43–50Google Scholar
  20. 20.
    Reiche I, Vignaud C, Menu M (2002) The crystallinity of ancient bone and dentine: New insights by transmission electron microscopy. Archaeometry 44:447–459CrossRefGoogle Scholar
  21. 21.
    Ribechini E, Orsini S, Silvano F, Colombini MP (2009) Py-GC/MS, GC/MS and FTIR investigations on LATE Roman-Egyptian adhesives from opus sectile: New insights into ancient recipes and technologies. Anal Chim Acta 638:79–87CrossRefGoogle Scholar
  22. 22.
    Maravelaki-Kalaitzaki P (2005) Black crusts and patinas on Pentelic marble from the Parthenon and Erechtheum (Acropolis, Athens):characterization and origin. Anal Chim Acta 532:187–198CrossRefGoogle Scholar
  23. 23.
    Domenech-Carbó MT, Domenech-Carbó A, Gimeno-Adelantado JV, Bosch-Reig F (2001) Identification of synthetic resins used in works of art by Fourier transform infrared spectroscopy. Appl Spectrosc 55:1590–1602CrossRefGoogle Scholar
  24. 24.
    Domenech-Carbó MT, Casas-Catalan MJ, Domenech-Carbo A, Mateo-Castro R, Gimeno-Adelantado JV, Bosch-Reig F (2001) Analytical study of canvas painting collection from the Basilica de la Virgen de los Desamparados using SEM/EDX, FR-IR, GC and electrochemical techniques. Anal Bioanal Chem 369:571–575Google Scholar
  25. 25.
    Castro K, Sarmiento A, Princi E, Pérez-Alonso M, Rodríguez-Laso MD, Vicini S, Madariaga JM, Pedemonte E (2007) Vibrational spectroscopy at the service of industrial archaeology: nineteenth-century wallpaper. Trac Trend Anal Chem 26:347–359CrossRefGoogle Scholar
  26. 26.
    Castro K, Pérez-Alonso M, Rodríguez-Laso MD, Etxebarria N, Madariaga JM (2007) Non-invasive and non-destructive micro-XRF and micro-Raman analysis of a decorative wallpaper from the beginning of the 19th century. Anal Bioanal Chem 387:847–860CrossRefGoogle Scholar
  27. 27.
    Castro K, Sarmiento A, Maguregui M, Martinez-Arkarazo I, Etxebarria N, Angulo M, Urrutikoetxea-Barrutia M, Gonzalez-Cembellin JM, Madariaga JM (2008) Multianalytical approach to the analysis of english polychromed alabaster sculptures: μ-Raman, μ-EDXRF and FTIR spectroscopies. Anal Bioanal Chem 392:755–763CrossRefGoogle Scholar
  28. 28.
    Castro K, Pérez M, Rodríguez-Laso MD, Madariaga JM (2003) FTIR Spectra database of Inorganic Art Materials. Anal Chem 75:214A–221ACrossRefGoogle Scholar
  29. 29.
    Pérez-Alonso M, Castro K, Olazabal MA, Madariaga JM (2006) In: Pérez-Arantegui J (ed) 34th International Symposium on Archaeometry. Institución Fernando el Católico (No. 2.621), ZaragozaGoogle Scholar
  30. 30.
    Colombini MP, Modugno F (2004) Characterisation of proteinaceous binders in artistic paintings by chromatographic techniques. J Sep Sci 27:147–160CrossRefGoogle Scholar
  31. 31.
    Gimeno-Adelantado JV, Mateo-Castro R, Doménech-Carbó MT, Bosch-Reig F, Doménech-Carbó A, Casas-Catalán MJ, Osete-Cortina L (2001) Identification of lipid binders in paintings by gas chromatography. Influence of the pigments. J Chromatogr A 922:385–390CrossRefGoogle Scholar
  32. 32.
    Casoli A, Musini PC, Palla G (1996) Gas chromatographic-mass spectrometric approach to the problem of characterizing binding media in paintings. J Chromatogr A 731:237–246CrossRefGoogle Scholar
  33. 33.
    Camo Asa (2005) The Unscrambler® 7.6. Trodheim, NorwayGoogle Scholar
  34. 34.
    Bersani D, Antoliali G, Lottici PP, Casoli A (2003) Raman microspectrometric investigation of wall paintings in S. Giovanni Evangelista Abbey in Parma: a comparison between two artists of the 16th century. Spectrochim Acta A 59:2409–2418CrossRefGoogle Scholar
  35. 35.
    Derrick MR, Stuliz D, Landry JM (1999) Infrared Spectroscopy in Conservation Science. The Getty Conservation Institute, Los AngelesGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. Sarmiento
    • 1
    Email author
  • M. Pérez-Alonso
    • 1
  • M. Olivares
    • 1
  • K. Castro
    • 1
  • I. Martínez-Arkarazo
    • 1
  • L. A. Fernández
    • 1
  • J. M. Madariaga
    • 1
  1. 1.Department of Analytical ChemistryUniversity of the Basque CountryBilbaoSpain

Personalised recommendations