Analytical and Bioanalytical Chemistry

, Volume 399, Issue 10, pp 3579–3588

Transformations of polycyclic musks AHTN and HHCB upon disinfection with hypochlorite: two new chlorinated disinfection by-products (CDBP) of AHTN and a possible source for HHCB-lactone

  • Paul Kuhlich
  • Robert Göstl
  • Philip Teichert
  • Christian Piechotta
  • Irene Nehls
Original Paper


In this work, the behavior of the polycyclic musks 6-acetyl-1,1,2,4,4,7-hexamethyltetraline (AHTN) and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-γ-2-benzopyran (HHCB) was investigated upon disinfection by using sodium hypochlorite as disinfectant in a model disinfection basin in order to find new disinfection by-products (DBP). In the case of AHTN, the carboxylic acid 3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid (AHTN-COOH) was generated by a haloform reaction, being the origin for two new chlorinated DBPs. In the case of HHCB, disinfection via hypochlorite led to the HHCB-lactone. All reaction products and intermediates were synthesized and isolated. The relevant degradation mechanisms are discussed in detail.


Musk AHTN HHCB HHCB-lactone Chlorination Disinfection 


  1. 1.
    Rowe DJ (2005) Chemistry and technology of flavors and fragrances. Wiley-Blackwell, Oxford. doi:10.1002/ange.200285283 Google Scholar
  2. 2.
    Roosens L, Covaci A, Neels H (2007) Concentrations of synthetic musk compounds in personal care and sanitation products and human exposure profiles through dermal application. Chemosphere 69(10):1540–1547CrossRefGoogle Scholar
  3. 3.
    Rimkus GG (1999) Polycyclic musk fragrances in the aquatic environment. Toxicol Lett 111(1–2):37–56CrossRefGoogle Scholar
  4. 4.
    Kupper T, Berset JD, Etter-Holzer R, Furrer R, Tarradellas J (2004) Concentration and specific loads of polycyclic musks in sewage sludge originating from a monitoring network in Switzerland. Chemosphere 54(8):1111–1120CrossRefGoogle Scholar
  5. 5.
    Heberer T (2003) Occurrence, fate, and assessment of polycyclic musk residues in the aquatic environment of urban areas—a review. Acta Hydrochim Hydrobiol 30(5–6):227–243Google Scholar
  6. 6.
    Fromme H, Otto T, Pilz K (2001) Polycyclic musk fragrances in different environmental compartments in Berlin (Germany). Water Res 35(1):121–128CrossRefGoogle Scholar
  7. 7.
    Rimkus GG, Wolf M (1996) Polycyclic musk fragrances in human adipose tissue and human milk. Chemosphere 33(10):2033–2043CrossRefGoogle Scholar
  8. 8.
    Guo R, Lee IS, Kim UJ, Oh JE (2010) Occurrence of synthetic musks in Korean sewage sludges. Sci Total Environ 408(7):1634–1639CrossRefGoogle Scholar
  9. 9.
    Reiner JL, Berset JD, Kannan K (2007) Mass flow of polycyclic musks in two wastewater treatment plants. Arch Environ Contam Toxicol 52(4):451–457CrossRefGoogle Scholar
  10. 10.
    Regueiro J, Llompart M, Garcia-Jares C, Garcia-Monteagudo JC, Cela R (2008) Ultrasound-assisted emulsification-microextraction of emergent contaminants and pesticides in environmental waters. J Chromatogr A 1190(1–2):27–38CrossRefGoogle Scholar
  11. 11.
    Bitsch N, Dudas C, Korner W, Failing K, Biselli S, Rimkus G, Brunn H (2002) Estrogenic activity of musk fragrances detected by the E-screen assay using human MCF-7 cells. Arch Environ Contam Toxicol 43(3):257–264CrossRefGoogle Scholar
  12. 12.
    Yamauchi R, Ishibashi H, Hirano M, Mori T, Kim JW, Arizono K (2008) Effects of synthetic polycyclic musks on estrogen receptor, vitellogenin, pregnane X receptor, and cytochrome P450 3A gene expression in the livers of male medaka (Oryzias latipes). Aquat Toxicol 90(4):261–268CrossRefGoogle Scholar
  13. 13.
    WHO (2006) Guidelines for drinking-water quality incorporating 1st and 2nd addenda. 1 (3rd ed.). WHOGoogle Scholar
  14. 14.
    Richardson SD (2003) Disinfection by-products and other emerging contaminants in drinking water. TrAC, Trends Anal Chem 22(10):666–684CrossRefGoogle Scholar
  15. 15.
    Rook JJ (1974) Formation of haloforms during chlorination of natural waters. Wat Treat Exam 23(Pt. 2):234–243Google Scholar
  16. 16.
    Yamamoto DN (2004) Mutagenicity of chlorination products of benzophenone and its derivatives. J Environ Chem 14(2):335–342Google Scholar
  17. 17.
    Taher B, Schleusener A, Baltes W (1994) Reaction of the Uv-a-absorber oxybenzone with water containing chlorine. Dtsch Lebensm Rundsch 90(2):35–38Google Scholar
  18. 18.
    Gallard H, Leclercq A, Croue JP (2004) Chlorination of bisphenol a: kinetics and by-products formation. Chemosphere 56(5):465–473CrossRefGoogle Scholar
  19. 19.
    Kuhlich P, Goestl R, Metzinger R, Piechotta C, Nehls I (2010) 3,5,5,6,8,8-Hexamethyl-5,6,7,8-tetrahydro-2-naphthoic acid (AHTN–COOH). Acta Crystallogr E66:o2687Google Scholar
  20. 20.
    Dewkar GK, Narina SV, Sudalai A (2003) NalO4-mediated selective oxidative halogenation of alkenes and aromatics using alkali metal halides. Org Lett 5(23):4501–4504CrossRefGoogle Scholar
  21. 21.
    Fuson RC, Bull BA (1934) The haloform reaction. Chem Rev 15(3):275–309CrossRefGoogle Scholar
  22. 22.
    Kochi JK (1965) Formation of alkyl halides from acids by decarboxylation with lead(IV) acetate and halide salts. J Org Chem 30:3265CrossRefGoogle Scholar
  23. 23.
    Valdersnes S, Kallenborn R, Sydnes LK (2006) Identification of several Tonalide(R) transformation products in the environment. Int J Environ Anal Chem 86(7):461–471CrossRefGoogle Scholar
  24. 24.
    Bovonsombat P, McNelis E (1993) Ring halogenations of polyalkylbenzenes with N-halosuccinimide and acidic catalysts. Synthesis 1993(2):237–241CrossRefGoogle Scholar
  25. 25.
    Franke S, Meyer C, Heinzel N, Gatermann R, Huhnerfuss H, Rimkus G, Konig WA, Francke W (1999) Enantiomeric composition of the polycyclic musks HHCB and AHTN in different aquatic species. Chirality 11(10):795–801CrossRefGoogle Scholar
  26. 26.
    Kajigaeshi S, Nakagawa T, Nagasaki N, Yamasaki H, Fujisaki S (1986) Oxidation of alcohols and ethers using sodium-bromate hydrobromic acid system. Bull Chem Soc Jpn 59(3):747–750CrossRefGoogle Scholar
  27. 27.
    Bressan M, Morvillo A (1989) Selective oxidation of alkanes and ethers mediated by ruthenium (II) complexes. J Chem Soc Chem Commun 7:421–423CrossRefGoogle Scholar
  28. 28.
    Gonsalvi L, Arends IWCE, Sheldon RA (2002) Highly efficient use of NaOCl in the Ru-catalysed oxidation of aliphatic ethers to esters. Chem Commun (Cambridge UK) 3:202–203CrossRefGoogle Scholar
  29. 29.
    Metsger L, Bittner S (2000) Autocatalytic oxidation of ethers with sodium bromate. Tetrahedron 56(13):1905–1910CrossRefGoogle Scholar
  30. 30.
    Martin C, Moeder M, Daniel X, Krauss G, Schlosser D (2007) Biotransformation of the polycyclic musks HHCB and AHTN and metabolite formation by fungi occurring in freshwater environments. Environ Sci Technol 41(15):5395–5402CrossRefGoogle Scholar
  31. 31.
    Bester K (2004) Retention characteristics and balance assessment for two polycyclic musk fragrances (HHCB and AHTN) in a typical German sewage treatment plant. Chemosphere 57(8):863–870CrossRefGoogle Scholar
  32. 32.
    Horii Y, Reiner JL, Loganathan BG, Kumar KS, Sajwan K, Kannan K (2007) Occurrence and fate of polycyclic musks in wastewater treatment plants in Kentucky and Georgia, USA. Chemosphere 68(11):2011–2020CrossRefGoogle Scholar
  33. 33.
    Hunsdiecker H, Hunsdiecker C (1942) Concerning the breakdown aliphatic acid salts by bromine. Berichte Der Deutschen Chemischen Gesellschaft 75:291–297CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Paul Kuhlich
    • 1
  • Robert Göstl
    • 2
  • Philip Teichert
    • 1
  • Christian Piechotta
    • 1
  • Irene Nehls
    • 1
  1. 1.BAM Federal Institute for Materials Research and TestingBerlinGermany
  2. 2.Department of ChemistryHumboldt-University BerlinBerlinGermany

Personalised recommendations