Analytical and Bioanalytical Chemistry

, Volume 399, Issue 8, pp 2763–2770 | Cite as

Label-free detection of nucleic acids by turn-on and turn-off G-quadruplex-mediated fluorescence

  • Jiangtao Ren
  • Haixia Qin
  • Jiahai WangEmail author
  • Nathan W. Luedtke
  • Erkang WangEmail author
  • Jin WangEmail author
Original Paper


In this study we have used two fluorescent probes, tetrakis(diisopropylguanidino)-zinc-phthalocyanine (Zn-DIGP) and N-methylmesoporphyrin IX (NMM), to monitor the reassembly of “split” G-quadruplex probes on hybridization with an arbitrary “target” DNA. According to this approach, each split probe is designed to contain half of a G-quadruplex-forming sequence fused to a variable sequence that is complementary to the target DNA. Upon mixing the individual components, both base-pairing interactions and G-quadruplex fragment reassembly result in a duplex–quadruplex three-way junction that can bind to fluorescent dyes in a G-quadruplex-specific way. The overall fluorescence intensities of the resulting complexes were dependent on the formation of proper base-pairing interactions in the duplex regions, and on the exact identity of the fluorescent probe. Compared with samples lacking any “target” DNA, the fluorescence intensities of Zn-DIGP-containing samples were lower, and the fluorescence intensities of NMM-containing samples were higher on addition of the target DNA. The resulting biosensors based on Zn-DIGP are therefore termed “turn-off” whereas the biosensors containing NMM are defined as “turn-on”. Both of these biosensors can detect target DNAs with a limit of detection in the nanomolar range, and can discriminate mismatched from perfectly matched target DNAs. In contrast with previous biosensors based on the peroxidase activity of heme-bound split G-quadruplex probes, the use of fluorescent dyes eliminates the need for unstable sensing components (H2O2, hemin, and ABTS). Our approach is direct, easy to conduct, and fully compatible with the detection of specific DNA sequences in biological fluids. Having two different types of probe was highly valuable in the context of applied studies, because Zn-DIGP was found to be compatible with samples containing both serum and urine whereas NMM was compatible with urine, but not with serum-containing samples.


G-quadruplex Conformational constraint Split probe Fluorescent probe 



This work was supported by the National Natural Science Foundation of China (nos 20905056 and 20735003), the 973 Project (2009CB930100 and 2010CB933600), and the Swiss National Science Foundation (no. 130074).

Supplementary material

216_2011_4669_MOESM1_ESM.pdf (124 kb)
ESM 1 (PDF 123 kb)


  1. 1.
    Qin WJ, Yim OS, Lai PS, Yung L-YL (2010) Dimeric gold nanoparticle assembly for detection and discrimination of single nucleotide mutation in Duchenne muscular dystrophy. Biosens Bioelectron 25(9):2021–2025CrossRefGoogle Scholar
  2. 2.
    Song J, Li Z, Cheng Y, Liu C (2010) Self-aggregation of oligonucleotide-functionalized gold nanoparticles and its applications for highly sensitive detection of DNA. Chem Commun 46(30):5548–5550CrossRefGoogle Scholar
  3. 3.
    Zuo X, Xia F, Xiao Y, Plaxco KW (2010) Sensitive and selective amplified fluorescence DNA detection based on exonuclease III-aided target recycling. J Am Chem Soc 132(6):1816–1818CrossRefGoogle Scholar
  4. 4.
    Hejazi MS, Pournaghi-Azar MH, Ahour F (2010) Electrochemical detection of short sequences of hepatitis C 3a virus using a peptide nucleic acid-assembled gold electrode. Anal Biochem 399(1):118–124CrossRefGoogle Scholar
  5. 5.
    Bonanni A, Pumera M, Miyahara Y (2010) Rapid, sensitive, and label-free impedimetric detection of a single-nucleotide polymorphism correlated to kidney disease. Anal Chem. doi: 10.1021/ac100165q Google Scholar
  6. 6.
    Li H, Sun Z, Zhong W, Hao N, Xu D, Chen H-Y (2010) Ultrasensitive electrochemical detection for DNA arrays based on silver nanoparticle aggregates. Anal Chem. doi: 10.1021/ac101193e Google Scholar
  7. 7.
    Guo W, Yuan J, Dong Q, Wang E (2009) Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. J Am Chem Soc 132(3):932–934CrossRefGoogle Scholar
  8. 8.
    Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14(3):303–308CrossRefGoogle Scholar
  9. 9.
    Wang K, Tang Z, Yang Chaoyong J, Kim Y, Fang X, Li W, Wu Y, Medley Colin D, Cao Z, Li J, Colon P, Lin H, Tan W (2009) Molecular engineering of DNA: molecular beacons. Angew Chem Int Ed 48(5):856–870CrossRefGoogle Scholar
  10. 10.
    Yang CJ, Martinez K, Lin H, Tan W (2006) Hybrid molecular probe for nucleic acid analysis in biological samples. J Am Chem Soc 128(31):9986–9987CrossRefGoogle Scholar
  11. 11.
    Grimes J, Gerasimova YV, Kolpashchikov DM (2010) Real-time SNP analysis in secondary-structure-folded nucleic acids. Angew Chem Int Ed. doi: 10.1002/anie.201004475 Google Scholar
  12. 12.
    Häner R, Biner SM, Langenegger SM, Meng T, Malinovskii VL (2010) A highly sensitive, excimer-controlled molecular beacon. Angew Chem Int Ed 49(7):1227–1230CrossRefGoogle Scholar
  13. 13.
    Yang CJ, Lin H, Tan W (2005) Molecular assembly of superquenchers in signaling molecular interactions. J Am Chem Soc 127(37):12772–12773CrossRefGoogle Scholar
  14. 14.
    Zhang C-y, Hu J (2010) Single quantum dot-based nanosensor for multiple DNA detection. Anal Chem. doi: 10.1021/ac9026675 Google Scholar
  15. 15.
    Russ Algar W, Massey M, Krull UJ (2009) The application of quantum dots, gold nanoparticles and molecular switches to optical nucleic-acid diagnostics. TrAC, Trends Anal Chem 28(3):292–306CrossRefGoogle Scholar
  16. 16.
    Li H, Rothberg LJ (2004) DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal Chem 76(18):5414–5417CrossRefGoogle Scholar
  17. 17.
    Xiao Y, Pavlov V, Gill R, Bourenko T, Willner I (2004) Lighting up biochemiluminescence by the surface self-assembly of DNA–hemin complexes. Chembiochem 5(3):374–379CrossRefGoogle Scholar
  18. 18.
    Deng M, Zhang D, Zhou Y, Zhou X (2008) Highly effective colorimetric and visual detection of nucleic acids using an asymmetrically split peroxidase DNAzyme. J Am Chem Soc 130(39):13095–13102CrossRefGoogle Scholar
  19. 19.
    Kolpashchikov DM (2008) Split DNA enzyme for visual single nucleotide polymorphism typing. J Am Chem Soc 130(10):2934–2935CrossRefGoogle Scholar
  20. 20.
    Nakayama S, Sintim HO (2009) Colorimetric split G-quadruplex probes for nucleic acid sensing: improving reconstituted DNAzyme’s catalytic efficiency via probe remodeling. J Am Chem Soc 131(29):10320–10333CrossRefGoogle Scholar
  21. 21.
    Kolpashchikov DM (2010) Binary probes for nucleic acid analysis. Chem Rev. doi: 10.1021/cr900323b Google Scholar
  22. 22.
    Alzeer J, Vummidi Balayeshwanth R, Roth Phillipe JC, Luedtke Nathan W (2009) Guanidinium-modified phthalocyanines as high-affinity G-quadruplex fluorescent probes and transcriptional regulators13. Angew Chem Int Ed 48(49):9362–9365CrossRefGoogle Scholar
  23. 23.
    Arthanari H, Basu S, Kawano T, Bolton P (1998) Fluorescent dyes specific for quadruplex DNA. Nucl Acids Res 26(16):3724–3728CrossRefGoogle Scholar
  24. 24.
    White EW, Tanious F, Ismail MA, Reszka AP, Neidle S, Boykin DW, Wilson WD (2007) Structure-specific recognition of quadruplex DNA by organic cations: influence of shape, substituents and charge. Biophys Chem 126(1–3):140–153CrossRefGoogle Scholar
  25. 25.
    Yang Q, Xiang J, Yang S, Li Q, Zhou Q, Guan A, Zhang X, Zhang H, Tang Y, Xu G (2010) Verification of specific G-quadruplex structure by using a novel cyanine dye supramolecular assembly: II. The binding characterization with specific intramolecular G-quadruplex and the recognizing mechanism. Nucl Acids Res 38(3):1022–1033CrossRefGoogle Scholar
  26. 26.
    Yang Q, Xiang J, Yang S, Zhou Q, Li Q, Tang Y, Xu G (2009) Verification of specific G-quadruplex structure by using a novel cyanine dye supramolecular assembly: I. Recognizing mixed G-quadruplex in human telomeres. Chem Commun 9:1103–1105CrossRefGoogle Scholar
  27. 27.
    Ma D-L, Che C-M, Yan S-C (2009) Platinum(II) complexes with dipyridophenazine ligands as human telomerase inhibitors and luminescent probes for G-quadruplex DNA. J Am Chem Soc 131(5):1835–1846CrossRefGoogle Scholar
  28. 28.
    Yang P, De Cian A, Teulade-Fichou M-P, Mergny J-L, Monchaud D (2009) Engineering bisquinolinium/thiazole orange conjugates for fluorescent sensing of G-quadruplex DNA13. Angew Chem Int Ed 48(12):2188–2191CrossRefGoogle Scholar
  29. 29.
    Koeppel F, Riou J-F, Laoui A, Mailliet P, Arimondo PB, Labit D, Petitgenet O, Helene C, Mergny J-L (2001) Ethidium derivatives bind to G-quartets, inhibit telomerase and act as fluorescent probes for quadruplexes. Nucl Acids Res 29(5):1087–1096CrossRefGoogle Scholar
  30. 30.
    Chang C-C, Kuo IC, Ling IF, Chen C-T, Chen H-C, Lou P-J, Lin J-J, Chang T-C (2004) Detection of quadruplex DNA structures in human telomeres by a fluorescent carbazole derivative. Anal Chem 76(15):4490–4494CrossRefGoogle Scholar
  31. 31.
    Phan AT, Modi YS, Patel DJ (2004) Propeller-type parallel-stranded G-quadruplexes in the human c-myc promoter. J Am Chem Soc 126(28):8710–8716CrossRefGoogle Scholar
  32. 32.
    Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucl Acids Res 34(19):5402–5415CrossRefGoogle Scholar
  33. 33.
    Seenisamy J, Rezler EM, Powell TJ, Tye D, Gokhale V, Joshi CS, Siddiqui-Jain A, Hurley LH (2004) The dynamic character of the G-quadruplex element in the c-MYC promoter and modification by TMPyP4. J Am Chem Soc 126(28):8702–8709CrossRefGoogle Scholar
  34. 34.
    Qin Y, Hurley LH (2008) Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie 90(8):1149–1171CrossRefGoogle Scholar
  35. 35.
    Venkatesan N, Jun Seo Y, Hyean Kim B (2008) Quencher-free molecular beacons: a new strategy in fluorescence based nucleic acid analysis. Chem Soc Rev 37(4):648–663CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied ChemistryChinese Academy of ScienceChangchunChina
  2. 2.Graduate School of Chinese Academy of ScienceBeijingChina
  3. 3.Institute of Organic ChemistryUniversity of ZürichZürichSwitzerland
  4. 4.Department of Chemistry and PhysicsState University of New York at Stony BrookNew YorkUSA

Personalised recommendations