Analytical and Bioanalytical Chemistry

, Volume 399, Issue 8, pp 2807–2820

Predicting the partitioning of biological compounds between room-temperature ionic liquids and water by means of the solvation-parameter model

  • Juan M. Padró
  • Agustín Ponzinibbio
  • Leidy B. Agudelo Mesa
  • Mario Reta
Original Paper


The partition coefficients, PIL/w, for different probe molecules as well as for compounds of biological interest between the room-temperature ionic liquids (RTILs) 1-butyl-3-methylimidazolium hexafluorophosphate, [BMIM][PF6], 1-hexyl-3-methylimidazolium hexafluorophosphate, [HMIM][PF6], 1-octyl-3-methylimidazolium tetrafluoroborate, [OMIM][BF4] and water were accurately measured. [BMIM][PF6] and [OMIM][BF4] were synthesized by adapting a procedure from the literature to a simpler, single-vessel and faster methodology, with a much lesser consumption of organic solvent. We employed the solvation-parameter model to elucidate the general chemical interactions involved in RTIL/water partitioning. With this purpose, we have selected different solute descriptor parameters that measure polarity, polarizability, hydrogen-bond–donor and hydrogen-bond–acceptor interactions, and cavity formation for a set of specifically selected probe molecules (the training set). The obtained multiparametric equations were used to predict the partition coefficients for compounds not present in the training set (the test set), most being of biological interest. Partial solubility of the ionic liquid in water (and water into the ionic liquid) was taken into account to explain the obtained results. This fact has not been deeply considered up to date. Solute descriptors were obtained from the literature, when available, or else calculated through commercial software. An excellent agreement between calculated and experimental log PIL/w values was obtained, which demonstrated that the resulting multiparametric equations are robust and allow predicting partitioning for any organic molecule in the biphasic systems studied.


Ionic liquids Partition coefficients Liquid–liquid extraction Solvation-parameter model RTIL synthesis 

Supplementary material

216_2011_4658_MOESM1_ESM.pdf (89 kb)
ESM 1(PDF 110 kb)


  1. 1.
    Poole CF, Poole SK (2010) J Chromatogr A 1217:2268–2286CrossRefGoogle Scholar
  2. 2.
    Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Green Chem 3:156–164CrossRefGoogle Scholar
  3. 3.
    Sun P, Armstrong DW (2010) Anal Chim Acta 661:1–16CrossRefGoogle Scholar
  4. 4.
    Liu J-F, Jönsson J-A, Jiang G-B (2005) Trends Anal Chem 24:20–27CrossRefGoogle Scholar
  5. 5.
    Huddleston JG, Willauer HD, Swatloski RP, Visser AE, Rogers RD (1998) Chem Commun 44:1765–1766CrossRefGoogle Scholar
  6. 6.
    Abraham MH, Grellier PL, Prior DV, Duce PP, Morris JJ, Taylor PJ (1989) J Chem Soc Perkin Trans 2:699–711Google Scholar
  7. 7.
    Abraham MH, Berthelot M, Laurence C, Taylor PJ (1998) J Chem Soc Perkin Trans 2:187–191Google Scholar
  8. 8.
    Abraham MH, Ibrahim A, Zissimos AM (2004) J Chromatogr A 1037:29–47CrossRefGoogle Scholar
  9. 9.
    Abraham MH, Zhao YH (2005) Phys Chem Chem Phys 7:2418–2422CrossRefGoogle Scholar
  10. 10.
    Reta MR, Rutan SC, Sadek PC, Carr PW (1999) Anal Chem 71:3484–3496CrossRefGoogle Scholar
  11. 11.
    Poole CF (2007) Adv Chromatogr 45:89–124CrossRefGoogle Scholar
  12. 12.
    Berthod A, Carda-Broch S (2003) J Liq Chromatogr Rel Technol 26:1493–1508CrossRefGoogle Scholar
  13. 13.
    Carda-Broch S, Berthod A, Armstrong DW (2003) Anal Bioanal Chem 375:191–199Google Scholar
  14. 14.
    Berthod A, Carda-Broch S (2004) Anal Bioanal Chem 380:168–177CrossRefGoogle Scholar
  15. 15.
    Sprunger L, Clark M, Acree WE Jr, Abraham MH (2007) J Chem Inf Model 47:1123–1129CrossRefGoogle Scholar
  16. 16.
    Poole CF (2004) J Chromatogr A 1037:49–82CrossRefGoogle Scholar
  17. 17.
    Fang D, Cheng J, Gong K, Shi Q-R, Zhou X-L, Liu Z-L (2008) J Fluorine Chem 129:108–111CrossRefGoogle Scholar
  18. 18.
    Fan J, Fan Y, Pei Y, Wu K, Wang J, Fan M (2008) Sep Purif Technol 61:324–331CrossRefGoogle Scholar
  19. 19.
    Wang J, Pei Y, Zhao Y, Hu Z (2005) Green Chem 7:196–202CrossRefGoogle Scholar
  20. 20.
    Abraham MH, Acree WE Jr (2006) Green Chem 8:906–915CrossRefGoogle Scholar
  21. 21.
    Kamlet MJ, Doherty RM, Carr PW, Mackay D, Abraham MH, Taft RW (1988) Environ Sci Technol 22:503–509CrossRefGoogle Scholar
  22. 22.
    Abraham MH, Zissimos AM, Huddleston JC, Willauer HD, Rogers RD, Acree WE (2003) Ind Eng Chem Res 42:413–418CrossRefGoogle Scholar
  23. 23.
    MacFarlane DR, Seddon KR (2007) Aust J Chem 60:3–5CrossRefGoogle Scholar
  24. 24.
    Vitha M, Carr PW (2006) J Chromatogr A 1126:143–194CrossRefGoogle Scholar
  25. 25.
    Crowhurst L, Mawdsley PR, Perez-Arlandis JM, Salter PA, Welton T (2003) Phys Chem Chem Phys 5:2790–2794CrossRefGoogle Scholar
  26. 26.
    Baker SN, Baker GA, Bright FV (2002) Green Chem 2:165–169CrossRefGoogle Scholar
  27. 27.
    Toh SLI, McFarlane J, Tsouris C, DePaoli DW, Luo H, Dai S (2006) Solv Extract Ion Exch 24:33–56CrossRefGoogle Scholar
  28. 28.
    Revelli A-L, Sprunger LM, Gibbs J, Acree WE, Baker GA, Mutelet F (2009) J Chem Eng Data 54:977–985CrossRefGoogle Scholar
  29. 29.
    Sprunger LM, Proctor A, Acree WE, Abraham MH (2008) Fluid Phase Equilibr 265:104–111CrossRefGoogle Scholar
  30. 30.
    Sprunger LM, Abraham MH, Gibbs J, Meng Y, Proctor A, Yao C, Acree WE Jr, Anderson JL (2009) Ind Eng Chem Res 48:4145–4154CrossRefGoogle Scholar
  31. 31.
    Fuguet E, Ràfols C, Bosch E, Abraham MH, Roses M (2002) J Chromatogr A 942:237–248CrossRefGoogle Scholar
  32. 32.
    Abraham MH, Chadha HS, Whiting GS, Mitchell R (1994) J Pharm Sci 83:1085–1100CrossRefGoogle Scholar
  33. 33.
    Anthony JL, Maggin EJ, Brennecke JF (2001) J Phys Chem B 105:10942–10949CrossRefGoogle Scholar
  34. 34.
    Liu J, Jiang G, Chi Y, Cai Y, Zhou Q, Hu J (2003) Anal Chem 75:5870–5876CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Juan M. Padró
    • 1
  • Agustín Ponzinibbio
    • 2
  • Leidy B. Agudelo Mesa
    • 1
  • Mario Reta
    • 1
  1. 1.Laboratorio de Separaciones Analíticas, Div. Química Analítica, Fac. de Cs. ExactasUNLPLa PlataArgentina
  2. 2.Laboratorio de Estudio de Compuestos Orgánicos (LADECOR) Fac. de Cs. ExactasUNLPLa PlataArgentina

Personalised recommendations