Analytical and Bioanalytical Chemistry

, Volume 400, Issue 2, pp 321–327 | Cite as

Study of non-covalent interactions of luotonin A derivatives and the DNA minor groove as a first step in the study of their analytical potential as DNA probes

  • Pierluigi Mussardo
  • Elisa Corda
  • Víctor González-Ruiz
  • Jegathalaprathaban Rajesh
  • Stefano Girotti
  • M. Antonia Martín
  • Ana I. Olives
Original Paper

Abstract

The interaction between DNA and several newly synthesized derivatives of the natural anticancer compound luotonin A has been studied. The results from our work reveal an effective and selective alkaloid/double-stranded DNA (ds-DNA) interaction. In the presence of increasing amounts of ds-DNA, a noticeable fluorescence quenching of the luotonin A derivatives under study was observed. However, this effect did not take place when single-stranded DNA (ss-DNA) was employed. The association constant alkaloids/ds-DNA was calculated by quantitation of such a quenching effect. The influence of other quenchers, namely Co2+ and Br on the native fluorescence of luotonin A and derivatives was also studied, and a remarkable quenching effect was observed for both ions. We have also investigated how by binding DNA the alkaloids could get protected from the external Co2+ and Br quenchers. The Stern–Volmer constants (KSV) for Co2+ and Br quenching effect on the studied alkaloids were considerably reduced (10–50%) after incubation of the compounds in the presence of DNA with regard to the KSV values in absence of DNA. An increase in the fluorescence anisotropy values of luotonins was also produced only in the presence of ds-DNA but not in the case of ss-DNA. To better characterize the nature of that interaction, viscosimetry assays and ethidium bromide displacement studies were conducted. With regard to DNA reference solutions, the viscosity of solutions containing DNA and luotonin A derivatives was reduced or not significantly increased. It was also observed that the studied compounds were unable to displace the intercalating agent ethidium bromide. All of these results, together with the obtained association constants values (Kass = 2.2 × 102 – 1.3 × 103), support that neither covalent nor intercalating interactions luotonin A derivatives/ds-DNA are produced, leading to the conclusion that these alkaloids bind ds-DNA through the minor groove. The specific changes in the fluorescence behavior of luotonin A and derivatives distinguishing between ss-DNA and ds-DNA binding, lead us to propose these compounds as attractive turn-off probes to detect DNA hybridization.

Keywords

Drug–DNA interactions DNA hybridization Fluorescence quenching Luotonin A Viscosimetry 

Abbreviations

ctDNA

Calf thymus DNA

ds-DNA

Double-stranded DNA

Kass

Association constant

Ksv

Stern–Volmer constant

ss-DNA

Single-stranded DNA

Notes

Acknowledgments

Financial support from Ministerio de Ciencia e Innovación (SPAIN) through grant CTQ2009-11312 as well as from Grupos de investigación UCM 920234 is gratefully acknowledged. The authors are grateful to Ministerio de Educación for an FPU research fellowship for V. González-Ruiz and Sócrates-Erasmus Program (UE) funds for P. Mussardo.

Supplementary material

216_2010_4640_MOESM1_ESM.pdf (129 kb)
ESM 1(PDF 128 kb)

References

  1. 1.
    Giannetti C, Citti L, Domenici C, Tedeschi L, Baldini F, Wabuyele MB, Vo.Dinh T (2006) Sens Actuators B 113:649–654CrossRefGoogle Scholar
  2. 2.
    Rodriguez-Mozaz S, Reder S, de Alda Lopez M, Gauglitz G, Barcelo D (2004) Biosens Bioelectron 19:633–640CrossRefGoogle Scholar
  3. 3.
    Rowe-Taitt CA, Golden JP, Feldstein MJ, Crass JJ, Hoffman KE, Ligler FS (2000) Biosens Bioelectron 14:785–794CrossRefGoogle Scholar
  4. 4.
    Nagl S, Schäferling M, Wolfbeis OS (2005) Microchim Acta 151:1–21CrossRefGoogle Scholar
  5. 5.
    Schäferling M, Nagl S (2006) Anal Bioanal Chem 385:500–517CrossRefGoogle Scholar
  6. 6.
    Schultz E, Galland R, Bouuëtiez Du, Flashaut T, Planat-Chrétien A, Lesbre F, Hoang A, Volland, Perraut F (2008) Biosens Bioelectron 23:987–994CrossRefGoogle Scholar
  7. 7.
    Lehr HP, Reimann M, Brandenburg a, Sulz G, Klapproth H (2003) Anal Chem 75:2414–2420CrossRefGoogle Scholar
  8. 8.
    Hanafi-Bagby D, Piunno PAE, Wust CC, Krull UJ (2000) Anal Chim Acta 411:19–30CrossRefGoogle Scholar
  9. 9.
    Bai L-P, Cai Z, Zhao ZZ, Nakatani K, Jiang Z-H (2008) Anal Bioanal Chem 392:709–716CrossRefGoogle Scholar
  10. 10.
    Song G-W, Cai Z-X, He Y, Lou Z-W (2004) Sensors and Actuators B 102:320–324CrossRefGoogle Scholar
  11. 11.
    Leung A, Shankar PM, Mutharasan R (2007) Sens Actuators B 125:688–703CrossRefGoogle Scholar
  12. 12.
    Ma Z, Hano Y, Nomura T (2005) Heterocycles 65:2203–2219CrossRefGoogle Scholar
  13. 13.
    Ma Z, Hano Y, Nomura T (2004) Bioorg Med Chem Lett 14:1193–1196CrossRefGoogle Scholar
  14. 14.
    Cagir A, Eisenhauer BM, Gao R, Thomas SJ, Hecht SM (2004) Bioorg Med Chem 12:6287–6299CrossRefGoogle Scholar
  15. 15.
    Avendaño C, Menéndez JC (2008) Medicinal chemistry of anticancer drugs. Elsevier, AmsterdamGoogle Scholar
  16. 16.
    Hsiang Y-H, Lihou MG, Liu LF (1989) Cancer Res 49:5077–5082Google Scholar
  17. 17.
    Cagir A, Jones SH, Gao R, Eisenhauer BM, Hecht SM (2003) J Am Chem Soc 125:13628–13629CrossRefGoogle Scholar
  18. 18.
    Aaron JJ, Trajkovska S (2006) Curr Drug Targets 7:1067–1081CrossRefGoogle Scholar
  19. 19.
    González-Ruiz V, Mussardo P, Corda E, Girotti S, Olives AI, Martín MA (2010) J Sep Sci 33:2086–2093CrossRefGoogle Scholar
  20. 20.
    Nakatani K, Matsuno T, Adachi K, Hagihara S, Saito I (2001) J Am Chem Soc 123:5695–5702CrossRefGoogle Scholar
  21. 21.
    Ihmels H, Faulhaber K, Vedaldi, Dall’Aqua F, Viola G (2005) Photochem Photobiol 81:1107–1115CrossRefGoogle Scholar
  22. 22.
    Sridharan V, Ribelles P, Ramos MT, Menéndez JC (2009) J Org Chem 74:5715–5718CrossRefGoogle Scholar
  23. 23.
    Kumar CV, Turner RS, Asuncion EH (1993) Photochem Photobiol A 74:231–238CrossRefGoogle Scholar
  24. 24.
    Li JF, Dong C (2009) Spectrochim Acta A 71:1938–1943CrossRefGoogle Scholar
  25. 25.
    Feng XZ, Lin Z, Yang LJ, Wang C, Bai CL (1998) Talanta 47:1223–1229CrossRefGoogle Scholar
  26. 26.
    Wang F, Huang W, Su L, Dong Z, Zhang S (2009) J Mol Struc 927:1–6CrossRefGoogle Scholar
  27. 27.
    Rabindranath B, Bijaya KS, Kalyan SG, Swagata D (2008) Int J Biol Macromol 42:14–21CrossRefGoogle Scholar
  28. 28.
    Waring M (2006) Sequence-specific DNA binding agents. RSC, Cambridge, pp 71–75CrossRefGoogle Scholar
  29. 29.
    Ling X, Zhong W, Huang Q, Ni K (2008) J Photochem Photobiol B 93:172–176CrossRefGoogle Scholar
  30. 30.
    Gopal M, Veeranna S (2005) J Photochem Photobiol B 81:181–189CrossRefGoogle Scholar
  31. 31.
    Joseph J, Kuruvilla E, Achuthan AT, Ramaiah D, Schuster GB (2004) Bioconj Chem 15:1230–1235CrossRefGoogle Scholar
  32. 32.
    Posokhov Y, Biner H, Içli S (2003) J Photochem Photobiol A 158:13–20CrossRefGoogle Scholar
  33. 33.
    Fei Y, Lu G, Fan G, Wu Y (2009) Anal Sci 25:1333–1338CrossRefGoogle Scholar
  34. 34.
    Valeur B (2001) Molecular fluorescence: principles and applications. Wiley VCH, WeinheimGoogle Scholar
  35. 35.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer Science + Business Media, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Pierluigi Mussardo
    • 1
    • 2
  • Elisa Corda
    • 1
    • 2
  • Víctor González-Ruiz
    • 1
  • Jegathalaprathaban Rajesh
    • 1
  • Stefano Girotti
    • 2
  • M. Antonia Martín
    • 1
  • Ana I. Olives
    • 1
  1. 1.S. D. Química Analítica, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
  2. 2.Dipartimento di Scienza dei Metalli, Elettrochimica e Tecniche ChimicheUniversità di BolognaBolognaItaly

Personalised recommendations