Analytical and Bioanalytical Chemistry

, Volume 399, Issue 7, pp 2549–2561 | Cite as

An analytical method for the simultaneous trace determination of acidic pharmaceuticals and phenolic endocrine disrupting chemicals in wastewater and sewage sludge by gas chromatography-mass spectrometry

  • Vasilios G. Samaras
  • Nikolaos S. Thomaidis
  • Athanasios S. Stasinakis
  • Themistokles D. Lekkas
Original Paper

Abstract

This article presents an analytical method based on solid-phase extraction (SPE) and gas chromatography coupled with mass spectrometry for the simultaneous determination of the most frequently used acidic pharmaceutical residues, ibuprofen, diclofenac, naproxen and ketoprofen (KFN), and phenolic endocrine disruptors, bisphenol (BPA), triclosan (TCS), nonylphenol, nonylphenol monoethoxylate and nonylphenol diethoxylate, in wastewater and sewage sludge samples. In the first phase of the study, each compound has been characterized individually and afterwards in mixture as a trimethylsilyl derivative in order to identify the characteristic ions (m/z ratio) constituting the mass spectrum and to choose the ions for quantification and confirmation. Subsequently, derivatization was evaluated by testing different variables such as the volume of the derivatization solvent bis(trimethylsilyl)trifluoroacetamide and the effect of each catalyst, pyridine and 1% trimethyl chlorosilane, in the derivatized solution. For the analysis of wastewater samples, two commercial SPE cartridges, C18 and Oasis HLB, were compared for their extraction efficiency of the target compounds. The key parameter of extraction procedure included the effect of pH (2.5, 5.3 and 7) of the loading solution. For solid samples, parameters such as the extracted biomass, the volume of the extraction organic solvent and the effect of matrix interferences in chromatographic analysis were evaluated. By using C18 cartridges as purification procedure and ultrasound sonication, satisfactory mean relative recoveries with BPA-d16 and meclofenamic acid as surrogates were obtained ranging from 91% to 117% for wastewater and 84% to 107% for sewage sludge samples. Nine-point calibration of the standard mixture was performed by linear regression analysis with a correlation coefficient >0.99 for all the tested compounds. Limits of detection for the developed methods were established between 0.3 (KFN) and 14.8 (BPA) ng L−1, and 15.0 (TCS) and 32.9 (BPA) ng g−1 for wastewater and sewage sludge, respectively. Application to real samples of the wastewater treatment plant in Athens, the capital of Greece, demonstrated the presence of all tested compounds in most of the samples.

Figure

An analytical method for the simultaneous trace determination of acidic pharmaceuticals and phenolic endocrine disrupting chemicals in wastewater and sewage sludge by gas chromatography-mass spectrometry

Keywords

Acidic pharmaceuticals Phenolic endocrine disrupting chemicals Environmental samples Silyl derivatization SPE GC-MS 

Supplementary material

216_2010_4607_MOESM1_ESM.pdf (84 kb)
ESM 1 (PDF 83 kb)

References

  1. 1.
    Caliman FA, Gavrilescu M (2009) Clean 37:277–303Google Scholar
  2. 2.
    Hao C, Zhao X, Yang P (2007) TrAC-Trends Anal Chem 26:569–580CrossRefGoogle Scholar
  3. 3.
    Petrović M, Gonzalez S, Barceló D (2003) TrAC-Trends Anal Chem 22:685–696CrossRefGoogle Scholar
  4. 4.
    Kot-Wasic A, Dębska J, Namieśnik J (2007) TrAC-Trends Anal Chem 26:557–568CrossRefGoogle Scholar
  5. 5.
    Comerton AM, Andrews RC, Bagley DM (2009) Phil Trans R Soc A 367:3923–3939CrossRefGoogle Scholar
  6. 6.
    Chen HC, Wang PL, Ding WH (2008) Chemosphere 72:863–869CrossRefGoogle Scholar
  7. 7.
    Zorita S, Boyd B, Jönsson S, Yilmaz E, Svensson C, Mathiasson L, Bergström S (2008) Anal Chim Acta 626:147–154CrossRefGoogle Scholar
  8. 8.
    Samaras VG, Thomaidis NS, Stasinakis AS, Gatidou G, Lekkas TD (2010) Int J Environ An Chem 90:219–229CrossRefGoogle Scholar
  9. 9.
    Araujo L, Wild J, Villa N, Camargo N, Cubillan D, Prieto A (2008) Talanta 75:111–115CrossRefGoogle Scholar
  10. 10.
    Basheer C, Lee HK (2004) J Chromatogr A 1057:163–169CrossRefGoogle Scholar
  11. 11.
    Patrolecco L, Capri S, De Angelis S, Polesello S, Valsecchi S (2004) J Chromatogr A 1022:1–7CrossRefGoogle Scholar
  12. 12.
    Komarek K, Safarikova M, Hubka T, Safarik I, Kandelova M, Kujalova H (2009) Chromatographia 69:133–137CrossRefGoogle Scholar
  13. 13.
    Yu Z, Peldszus S, Huck PM (2007) J Chromatogr A 1148:65–77CrossRefGoogle Scholar
  14. 14.
    Lee HB, Peart TE, Svoboda ML (2005) J Chromatogr A 1094:122–129CrossRefGoogle Scholar
  15. 15.
    Zhao JL, Ying GG, Wang L, Yang JF, Yang XB, Yang LH, Li X (2009) Sci Total Environ 407:962–974CrossRefGoogle Scholar
  16. 16.
    Gibson R, Becerril-Bravo E, Silva-Castro V, Jiménez B (2007) J Chromatogr A 1169:31–39CrossRefGoogle Scholar
  17. 17.
    Durán-Alvarez JC, Becerril-Bravo E, Silva Castro V, Jiménez B, Gibson R (2009) Talanta 78:1159–1166CrossRefGoogle Scholar
  18. 18.
    Quintana JB, Rodil R, Reemtsma T (2004) J Chromatogr A 1061:19–26CrossRefGoogle Scholar
  19. 19.
    Rodríguez I, Carpinteiro J, Quintana JB, Carro AM, Lorenzo RA, Cela R (2004) J Chromatogr A 1024:1–8CrossRefGoogle Scholar
  20. 20.
    Díaz A, Ventura F, Galceran MT (2002) J Chromatogr A 963:159–167CrossRefGoogle Scholar
  21. 21.
    Liscio C, Magi E, Di Carro M, Suter MJF, Vermeirssen ELM (2009) Environ Pollut 157:2716–2721CrossRefGoogle Scholar
  22. 22.
    Pietrogrande MC, Basaglia G (2007) TrAC-Trends Anal Chem 26:1086–1094CrossRefGoogle Scholar
  23. 23.
    Radjenović J, Jelić A, Petrović M, Barceló D (2009) Anal Bioanal Chem 393:1685–1695CrossRefGoogle Scholar
  24. 24.
    Gentili A (2007) Anal Bioanal Chem 387:1185–1202CrossRefGoogle Scholar
  25. 25.
    Farré M, Petrovic M, Barceló D (2007) Anal Bioanal Chem 387:1203–1214CrossRefGoogle Scholar
  26. 26.
    Rodil R, Quintana JB, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D (2009) J Chromatogr A 1216:2958–2969CrossRefGoogle Scholar
  27. 27.
    Gatidou G, Thomaidis NS, Stasinakis AS, Lekkas TD (2007) J Chromatogr A 1138:32–41CrossRefGoogle Scholar
  28. 28.
    Núñez L, Turiel E, Tadeo JL (2007) J Chromatogr A 1146:157–163CrossRefGoogle Scholar
  29. 29.
    Cortazar E, Bartolomé L, Delgado A, Etxebarria N, Fernández LA, Usobiaga A, Zuloaga O (2005) Anal Chim Acta 534:247–254CrossRefGoogle Scholar
  30. 30.
    Rice SL, Mitra S (2007) Anal Chim Acta 589:125–132CrossRefGoogle Scholar
  31. 31.
    Díaz-Cruz MS, García-Galán MJ, Guerra P, Jelic A, Postigo C, Eljarrat E, Farré M, López de Alda MJ, Petrovic M, Barceló D (2009) TrAC-Trends Anal Chem 28:1263–1275CrossRefGoogle Scholar
  32. 32.
    Nie Y, Qiang Z, Zhang H, Adams C (2009) J Chromatogr A 1216:7071–7080CrossRefGoogle Scholar
  33. 33.
    Planas C, Guadayol JM, Droguet M, Escalas A, Rivera J, Caixach J (2002) Water Res 36:982–988CrossRefGoogle Scholar
  34. 34.
    Jelić A, Petrović M, Barceló D (2009) Talanta 80:363–371CrossRefGoogle Scholar
  35. 35.
    Kosjek T, Heath E, Krbavčič A (2005) Environ Int 31:679–685CrossRefGoogle Scholar
  36. 36.
    Gallart-Ayala H, Moyano E, Galceran MT (2010) Mass Spectrom Rev 29:776–805CrossRefGoogle Scholar
  37. 37.
    Camacho-Muñoz D, Martin J, Santos JL, Aparicio I, Alonso E (2009) J Sep Sci 32:3064–3073CrossRefGoogle Scholar
  38. 38.
    Hernando MD, Heath E, Petrovic M, Barceló D (2006) Anal Bioanal Chem 385:985–991CrossRefGoogle Scholar
  39. 39.
    Sanchez-Prado L, Garcia-Jares C, Llompart M (2010) J Chromatogr A 1217:2390–2414CrossRefGoogle Scholar
  40. 40.
    Dobor J, Varga M, Yao J, Chen H, Palkó G, Záray G (2010) Microchem J 94:36–41CrossRefGoogle Scholar
  41. 41.
    Stasinakis AS, Gatidou G, Mamais D, Thomaidis NS, Lekkas TD (2008) Water Res 42:1796–1804CrossRefGoogle Scholar
  42. 42.
    Ternes TA, Herrmann N, Bonerz M, Knacker T, Siegrist H, Joss A (2004) Water Res 38:4075–4084CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Vasilios G. Samaras
    • 1
  • Nikolaos S. Thomaidis
    • 2
  • Athanasios S. Stasinakis
    • 1
  • Themistokles D. Lekkas
    • 1
  1. 1.Water and Air Quality Laboratory, Department of EnvironmentUniversity of the AegeanMytileneGreece
  2. 2.Laboratory of Analytical Chemistry, Department of ChemistryUniversity of AthensAthensGreece

Personalised recommendations