Analytical and Bioanalytical Chemistry

, Volume 400, Issue 8, pp 2649–2654 | Cite as

Investigation of element distribution and homogeneity of TXRF samples using SR-micro-XRF to validate the use of an internal standard and improve external standard quantification

  • C. Horntrich
  • S. Smolek
  • A. Maderitsch
  • R. Simon
  • P. Kregsamer
  • C. Streli
Original Paper


Total reflection X-ray fluorescence analysis (TXRF) offers a nondestructive qualitative and quantitative analysis of trace elements. Due to its outstanding properties TXRF is widely used in the semiconductor industry for the analysis of silicon wafer surfaces and in the chemical analysis of liquid samples. Two problems occur in quantification: the large statistical uncertainty in wafer surface analysis and the validity of using an internal standard in chemical analysis. In general TXRF is known to allow for linear calibration. For small sample amounts (low nanogram (ng) region) the thin film approximation is valid neglecting absorption effects of the exciting and the detected radiation. For higher total amounts of samples deviations from the linear relation between fluorescence intensity and sample amount can be observed. This could be caused by the sample itself because inhomogeneities and different sample shapes can lead to differences of the emitted fluorescence intensities and high statistical errors. The aim of the study was to investigate the elemental distribution inside a sample. Single and multi-element samples were investigated with Synchrotron-radiation-induced micro X-ray Fluorescence Analysis (SR-μ-XRF) and with an optical microscope. It could be proven that the microscope images are all based on the investigated elements. This allows the determination of the sample shape and potential inhomogeneities using only light microscope images. For the multi-element samples, it was furthermore shown that the elemental distribution inside the samples is homogeneous. This justifies internal standard quantification.


Microscope (left) and SR-μ-XRF images (right) of a multi-element sample (V, Mn, Ni, Ge; 10 ng each)


Internal standard External standard TXRF SR-μ-XRF Homogeneity 


  1. 1.
    Wobrauschek P, Kregsamer P, Streli C, Aiginger H (1991) Recent developments and results in total reflection X-ray fluorescence analysis. Adv X-Ray Anal 34:1–12Google Scholar
  2. 2.
    Wobrauschek P, Kregsamer P, Streli C, Rieder R, Aiginger H (1992) TXRF with various excitation sources. Adv X-Ray Anal 35:925–931Google Scholar
  3. 3.
    Ladisich W, Rieder R, Wobrauschek P, Aiginger H (1993) Total reflection X-ray fluorescence analysis with monoenergetic excitation and full spectrum excitation using rotating anode X-ray tubes. Nucl Instrum Methods Phys Res A 330(3):501–506CrossRefGoogle Scholar
  4. 4.
    Kregsamer P, Streli C, Wobrauschek P (2001) Total reflection X-ray fluorescence. In: Van Grieken R, Markowicz A (eds) Handbook of X-ray spectrometry. Marcel Dekker, New York, Basel, pp 559–602Google Scholar
  5. 5.
    Stoev KN, Sakurai K (1999) Review on grazing incidence X-ray spectrometry and reflectometry. Spectrochim Acta B 54(1):41–82CrossRefGoogle Scholar
  6. 6.
    Pahlke S (2003) Quo vadis total reflection X-ray fluorescence? Spectrochim Acta B 58(12):2025–2038CrossRefGoogle Scholar
  7. 7.
    Pahlke S, Fabry L, Kotz L, Mantler C, Ehmann T (2001) Determination of ultra trace contaminants on silicon wafer surfaces using total-reflection X-ray fluorescence TXRF ‘state-of-the-art’. Spectrochim Acta B 56(11):2261–2274CrossRefGoogle Scholar
  8. 8.
    Fabry L, Pahlke S (2002) Total reflection X-ray fluorescence analysis (TXRF). In: Bubert H, Jenett H (eds) Surface and thin film analysis. Wiley, Weinheim, pp 181–193CrossRefGoogle Scholar
  9. 9.
    Klockenkämper R (1997) Total reflection X-ray fluorescence analysis. Wiley, WeinheimGoogle Scholar
  10. 10.
    Gohshi Y, Mori Y, Yabumoto N, Kawai K, Araki K, Urano A, Kozono S, Shibata H, Shimazaki A, Taniike S, Nakama T, Nishihag K, Horie H, Shabani MB, Yakushiji K, Yamagami M (2007) ISO/TC201/WG2 Activities: VPT-TXRF Round Robin Results and Perspective. TXRF conference, Trento, ItalyGoogle Scholar
  11. 11.
    Wobrauschek P (2007) Total reflection X-ray fluorescence analysis—a review. X-Ray Spectrom 36(5):289–300CrossRefGoogle Scholar
  12. 12.
    Prange A, Schwenke H (1992) Trace element analysis using total reflection X-ray fluorescence spectrometry. Adv X-Ray Anal 35:899–923Google Scholar
  13. 13.
    Klockenkämper R (1997) Quantitative micro- and trace analyses: conditions and limitations. In: Winefordner JD (ed) Total reflection X-ray fluorescence analysis. Wiley, Weinheim, pp 156–159Google Scholar
  14. 14.
    Prange A, Schwenke H (1989) Sample treatment for TXRF—requirements and prospects. Adv X-Ray Anal 32:211–220Google Scholar
  15. 15.
    Hellin D, Rip J, Arnauts S, De Gendt S, Mertens PW, Vinckier C (2004) Validation of vapor phase decomposition-droplet collection-total reflection X-ray fluorescence spectrometry for metallic contamination analysis of silicon wafers. Spectrochim Acta B 59(8):1149–1157CrossRefGoogle Scholar
  16. 16.
    Hellin D, Fyen W, Rip J, Delande T, Mertens PW, Gendt SD, Vinckier C (2004) Saturation effects in TXRF on micro-droplet residue samples. J Anal At Spectrom 19(12):1517–1523CrossRefGoogle Scholar
  17. 17.
    Hellin D, Rip J, Geens V, Delande T, Conard T, Gendt SD, Vinckier C (2005) Remediation for TXRF saturation effects on microdroplet residues from preconcentration methods on semiconductor wafers. J Anal At Spectrom 20(7):652–658CrossRefGoogle Scholar
  18. 18.
  19. 19.
  20. 20.
    Van Espen P, Janssens K, Nobels J (1986) AXIL-PC: software for the analysis of complex X-ray spectra. Chemom Intell Lab Syst 1(1):109–114CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • C. Horntrich
    • 1
  • S. Smolek
    • 1
  • A. Maderitsch
    • 1
  • R. Simon
    • 2
  • P. Kregsamer
    • 1
  • C. Streli
    • 1
  1. 1.AtominstitutVienna University of TechnologyWienAustria
  2. 2.Institute for Synchrotron Radiation (ISS)Karlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany

Personalised recommendations