Analytical and Bioanalytical Chemistry

, Volume 400, Issue 1, pp 17–23

Rapid quantification of tilidine, nortilidine, and bisnortilidine in urine by automated online SPE-LC-MS/MS

  • Christoph Köhler
  • Thomas Grobosch
  • Torsten Binscheck
Original Paper

Abstract

The opioid tilidine is a prodrug which is hepatically metabolized to active nortilidine and bisnortilidine. Due to the increasing abuse of tilidine by drug users and the lack of a specific immunoassay, we developed an analytical method for the quantification of tilidine, nortilidine, and bisnortilidine in urine suitable for screening. In a following step, this method was used to establish data on excretion kinetics of the substances in order to evaluate the time window of detection after a single oral dose of tilidine/naloxone and also was applied to authentic urine samples from correctional facilities. Urine samples were mixed with internal standard solution and extracted on a weak cation exchanger at pH 6 using a Symbiosis Pico system. The chromatographic separation was achieved within a 3.5-min run time on a Phenylhexyl column (50 × 2.0 mm, 5 μm) via gradient elution (methanol and 0.2% formic acid) at a flow rate of 0.50 mL/min. The ESI-MS/MS was performed on a QTrap 3,200 in positive multiple reaction monitoring mode using two mass transitions per analyte. Validating the method resulted in a lower limit of quantification of 1.0 μg/L followed by a linear calibration range to 100 μg/L for each analyte (r2 > 0.99). The analytical method allowed the detection of a single dose of a commercially available tilidine solution up to 7 days after administration. Using this highly sensitive method, 55 of 3,665 urine samples were tested positive.

Keywords

Tilidine Nortilidine Bisnortilidine Online SPE LC-MS/MS 

References

  1. 1.
    Baselt RC (2008) Disposition of toxic drugs and chemicals in man. Biomedical Publications, Foster CityGoogle Scholar
  2. 2.
    Trojan A, Beil HW (1978) Tilidine abuse and dependence. Drug Alcohol Depend 3(6):383–391CrossRefGoogle Scholar
  3. 3.
    Berger H, Börsch-Ising (1979) Potential abuse of tilidine (Valoron) (author’s translation). Med Klin 74(15):563–569Google Scholar
  4. 4.
    Jasinski DR, Preston KL (1986) Evaluation of tilidine for morphine-like subjective effects and euphoria. Drug Alcohol Depend 18:273–292CrossRefGoogle Scholar
  5. 5.
    Cordonnier J, van den Heede M, Heyndrickx (1987) Disposition of tilidine in a fatal poisoning in man. J Anal Toxicol 11:105–109Google Scholar
  6. 6.
    Regenthal R, Krüger M, Richter M, Preiss R (1998) Poisoning with tilidine and naloxone: toxicokinetic and clinical observations. Hum Exp Toxicol 17:593–597CrossRefGoogle Scholar
  7. 7.
    Brennscheidt U, Seiler KU, Thomann D (2000) Pharmacokinetics of nortilidine and naloxone after administration of tilidine/naloxone solution or tilidine/naloxone sustained release tablets. Drug Res 50:1015–1022Google Scholar
  8. 8.
    Weiss J, Sawa E, Riedel KD, Haefeli WE, Mikus G (2008) In vitro metabolism of the opioid tilidine and interaction of tilidine and nortilidine with CYP3A4, CYP2C19, and CYP2D6. Naunyn Schmiedebergs Arch Pharmacol 378(3):275–282CrossRefGoogle Scholar
  9. 9.
    Thierry C, Boeynaems JM, Paolo M (2005) Actions of tilidine and nortilidine on cloned opioid redeptors. Eur J Pharm 506:205–208CrossRefGoogle Scholar
  10. 10.
    Vollmer KO, Achenbach H (1974) Zum Metabolismus von dl-trans-2-dimethylamino-1-phenylcyclohex-3-en-trans-1-carbonsäureäthylester-hydrochlorid. Drug Res 24(9):1237–1242Google Scholar
  11. 11.
    Vollmer KO, Poisson A (1976) Zum metabolismus von dl-trans-2-dimethylamino-1-phenylcyclohex-3-en-trans-1-carbonsäureäthylester-hydrochlorid (Tilidin-HCl). Drug Res 26(10):1827–1836Google Scholar
  12. 12.
    Vollmer KO, Hodenberg A (1977) Zum metabolismus von dl-trans-2-dimethylamino-1-phenylcyclohex-3-en-trans-1-carbonsäureäthylester-hydrochlorid (Tilidin-HCl). Drug Res 27(2):1706–1713Google Scholar
  13. 13.
    Narcotics Act (2009) Federal Department of Justice, Berlin. http://bundesrecht.juris.de/bundesrecht/btmg_1981/gesamt.pdf, accessed 23 Aug 2010
  14. 14.
    Hengy H, Vollmer KO, Gladlau V (1987) Gas-chromatographic determination of nanogram amounts of enantiomers of nortilidine, a main metabolite of tilidine, in biological specimen. Clin Chem 24(4):692–697Google Scholar
  15. 15.
    Musshoff F, Trafkowski J, Kuepper U, Madea BJ (2006) An automated and fully validated LC-MS/MS procedure for the simultaneous determination of 11 opioids used in palliative care, with 5 of their metabolites. Mass Spectrom 41(5):633–640CrossRefGoogle Scholar
  16. 16.
    Hengy H, Vollmer KO, Gladigau V (1987) GLC determination of tilidine, nortilidine and bisnortilidine in biological fluids with a nitrogen-sensitive detector. J Pharm Sci 67:1765–1768CrossRefGoogle Scholar
  17. 17.
    Cordonnier J, Wauters A, Heyndrickx A (1987) Comparison of a GLC-NPD method with a GLC-MS-SIM procedure for the determination of tilidine and its metabolites in plasma. J Anal Toxicol 11(4):144–148Google Scholar
  18. 18.
    Veuthey JL, Souverain S, Rudaz S (2004) Column-switching procedures for the fast analysis of drugs in biologic samples. Ther Drug Monit 26(2):161–166CrossRefGoogle Scholar
  19. 19.
    Köhler C, Grobosch T, Binscheck T (2009) Rapid quantification of tilidine, nortilidine and naloxone in urine by LC-ESI-MS/MS. Bull TIAFT 2009:O18Google Scholar
  20. 20.
    Hyötyläinen T (2007) Principles, developments and applications of on-line coupling of extraction with chromatography. J Chromatogr A 1153:14–28CrossRefGoogle Scholar
  21. 21.
    Grieshaber AF, Moore KA, Levine B (2001) The detection of psilocin in human urine. J Forensic Sci 46:627–630Google Scholar
  22. 22.
    Peters FT, Hartung M, Herbold M, Schmitt G, Daldrup T, Mußhoff F (2009) Richtlinie der GTFCh zur Qualitätssicherung bei forensisch-toxikologischen Untersuchungen: Anforderungen an die Validierung von Analysenmethoden. Toxichem Krimtech 76(3):185–208Google Scholar
  23. 23.
    U.S. Department of Health and Human Services. Food and Drug Administration (2001) Guidance for industry. Bioanalytical method validation. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070107.pdf
  24. 24.
    Del Mar Ramírez Fernández M, Wille SMR, Samyn N, Wood M, López-Rivadulla M, De Boeck G (2009) High-throughout analysis of amphetamines in blood and urine with online solid-phase extraction–liquid chromatography–tandem mass spectrometry. J Anal Toxicol 33:578–587Google Scholar
  25. 25.
    Schönberg L, Grobosch T, Lampe D, Kloft C (2006) New screening method for basic compounds in urine by on-line extraction–high-performance liquid chromatography with photodiode-array detection. J Chromatogr A 1134:177–185CrossRefGoogle Scholar
  26. 26.
    Brennscheidt U, Brunnmüller U, Proppe D, Thomann P, Seiler KU (2007) Pharmacokinetics of tilidine and naloxone in patients with severe hepatic impairment. Drug Res 57(2):106–111Google Scholar
  27. 27.
    Vollmer KO, Thomann P, Hengy H (1989) Pharmacokinetics of tilidine and metabolites in man. Drug Res 39(10):1283–1288Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Christoph Köhler
    • 1
  • Thomas Grobosch
    • 1
  • Torsten Binscheck
    • 1
  1. 1.Institute of Toxicology–Clinical Toxicology and Poison Information CentreBerlinGermany

Personalised recommendations