Analytical and Bioanalytical Chemistry

, Volume 399, Issue 4, pp 1631–1639

Evaluation of extraction methods for quantification of aqueous fullerenes in urine

  • Troy M. Benn
  • Benny F. G. Pycke
  • Pierre Herckes
  • Paul Westerhoff
  • Rolf U. Halden
Original Paper

Abstract

There is a growing concern about the human and environmental health effects of fullerenes (e.g., C60) due to their increasing application in research, medicine, and industry. Toxicological and pharmacokinetic research requires standard methods for extraction and detection of fullerenes from biological matrices such as urine. The present study validates the use of liquid-liquid extraction (LLE) and solid-phase extraction (SPE) methods in conjunction with liquid chromatography–mass spectrometry (LC–MS) for the quantitative determination of C60 in human and synthetic urine as compared with ultrapure water. Glacial acetic acid, which is necessary to prevent emulsions during LLE, inhibited C60 detection by LC–MS, but this could be mitigated with evaporation. Aqueous C60 aggregates (nC60) were spiked at 180 μg/L into the components of a synthetic urine recipe to determine their individual impacts on extraction and detection. Urea, creatinine, and a complex protein (i.e., gelatin) were found to impair SPE, leading to a low recovery rate of 43 ± 4% for C60 spiked into human urine. In contrast, C60 was consistently recovered from synthetic matrices using LLE, and recovery in human urine was 80 ± 6%. These results suggest that LLE combined with LC–MS is suitable for studying the clearance of fullerenes from the body. LLE is a robust technique that holds promise for extracting C60 from other complex biological matrices (e.g., blood, sweat, amniotic fluid) in toxicological studies, enabling a better understanding of the behavior of fullerenes in human and animal systems and facilitating a more comprehensive risk evaluation of fullerenes.

Keywords

Solid-phase extraction Nano C60 Environment Fate Chromatography Mass spectrometry 

References

  1. 1.
    Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007) Medicinal applications of fullerenes. Int J Nanomedicine 2(4):639–649Google Scholar
  2. 2.
    Jensen AW, Wilson SR, Schuster DI (1996) Biological applications of fullerenes. Bioorg Med Chem Lett 4(6):767–779CrossRefGoogle Scholar
  3. 3.
    Markovic Z, Trajkovic V (2008) Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials 29(26):3561–3573CrossRefGoogle Scholar
  4. 4.
    Prato M (1997) [60] Fullerene chemistry for materials science applications. J Mater Chem 7(7):1097–1109CrossRefGoogle Scholar
  5. 5.
    Ebbesen TW, Hiura H, Hedenquist JW, de Ronde CEJ, Andersen A, Often M, Melezhik VA (1995) Origins of fullerenes in rock. Science 268:1634–1635CrossRefGoogle Scholar
  6. 6.
    Ishiguro T, Takatori Y, Akihama K (1997) Microstructure of diesel soot particles probed by electron microscopy: first observation of inner core and outer shell. Combust Flame 108(1–2):231–234CrossRefGoogle Scholar
  7. 7.
    Lee TH, Yao N, Chen TJ, Hsu WK (2002) Fullerene-like carbon particles in petrol soot. Carbon 40(12):2275–2279CrossRefGoogle Scholar
  8. 8.
    Utsunomiya S, Jensen KA, Keeler GJ, Ewing RC (2002) Uraninite and fullerene in atmospheric particles. Environ Sci Technol 36:4943–4947CrossRefGoogle Scholar
  9. 9.
    Farre M, Perez S, Gajda-Schrantz K, Osorio V, Kantiani L, Ginebreda A, Barcelo D (2010) First determination of C-60 andC(70) fullerenes and N-methylfulleropyrrolidine C-60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry. J Hydrol 383(1–2):44–51CrossRefGoogle Scholar
  10. 10.
    Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170CrossRefGoogle Scholar
  11. 11.
    Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222CrossRefGoogle Scholar
  12. 12.
    Murr LE, Soto KF, Esquivel EV, Bang JJ, Guerrero PA, Lopez DA, Ramirez DA (2004) Carbon nanotubes and other fullerene-related nanocrystals in the environment: a TEM study. JOM 56(6):28–31CrossRefGoogle Scholar
  13. 13.
    Dhawan A, Taurozzi JS, Pandey AK, Shan W, Miller SM, Hashsham SA, Tarabara VV (2006) Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity. Environ Sci Technol 40(23):7394–7401CrossRefGoogle Scholar
  14. 14.
    Lee J, Fortner JD, Hughes JB, Kim JH (2007) Photochemical production of reactive oxygen species by C60 in the aqueous phase during UV irradiation. Environ Sci Technol 41(7):2529–2535CrossRefGoogle Scholar
  15. 15.
    Yamakoshi Y, Umezawa N, Ryu A, Arakane K, Miyata N, Goda Y, Masumizu T, Nagano T (2003) Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-* versus 1O2. J Am Chem Soc 125(42):12803–12809CrossRefGoogle Scholar
  16. 16.
    Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, Alemany LB, Tao YJ, Guo W, Ausman KD, Colvin VL, Hughes JB (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39(11):4307–4316CrossRefGoogle Scholar
  17. 17.
    Lee I, Mackeyev Y, Cho M, Li D, Kim JH, Wilson LJ, Alvarez PJ (2009) Photochemical and antimicrobial properties of novel C60 derivatives in aqueous systems. Environ Sci Technol 43(17):6604–6610CrossRefGoogle Scholar
  18. 18.
    Lyon DY, Adams LK, Falkner JC, Alvarez PJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40(14):4360–4366CrossRefGoogle Scholar
  19. 19.
    Lyon DY, Alvarez PJ (2008) Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol 42(21):8127–8132CrossRefGoogle Scholar
  20. 20.
    Tsao N, Kanakamma PP, Luh TY, Chou CK, Lei HY (1999) Inhibition of Escherichia coli-induced meningitis by carboxyfullerence. Antimicrob Agents Chemother 43(9):2273–2277Google Scholar
  21. 21.
    Isaacson CW, Kleber M, Field JA (2009) Quantitative analysis of fullerene nanomaterials in environmental systems: a critical review. Environ Sci Technol 43(17):6463–6474CrossRefGoogle Scholar
  22. 22.
    Pycke BFG, Benn TM, Westerhoff P, Halden RU (2010) Strategies for quantifying C60 fullerenes in environmental and biological samples and implications for studies in environmental health and ecotoxicology. Trends Anal Chem. doi: 10.1016/j.trac.2010.08.005
  23. 23.
    Cagle DW, Kennel SJ, Mirzadeh S, Alford JM, Wilson LJ (1999) In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. Proc Natl Acad Sci U S A 96(9):5182–5187CrossRefGoogle Scholar
  24. 24.
    Georgin D, Czarny B, Botquin M, Mayne-L'hermite M, Pinault M, Bouchet-Fabre B, Carriere M, Poncy JL, Chau Q, Maximilien R, Dive V, Taran F (2009) Preparation of (14)C-labeled multiwalled carbon nanotubes for biodistribution investigations. J Am Chem Soc 131(41):14658–14659CrossRefGoogle Scholar
  25. 25.
    Nikolic N, Vranjes-Ethuric S, Jankovic D, Ethokic D, Mirkovic M, Bibic N, Trajkovic V (2009) Preparation and biodistribution of radiolabeled fullerene C60 nanocrystals. Nanotechnol 20(38):385102CrossRefGoogle Scholar
  26. 26.
    Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A 103(9):3357–3362CrossRefGoogle Scholar
  27. 27.
    Rajagopalan P, Wudl F, Schinazi RF, Boudinot FD (1996) Pharmacokinetics of a water-soluble fullerene in rats. Antimicrob Agents Chemother 40(10):2262–2265Google Scholar
  28. 28.
    Pauluhn J (2010) Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci 113(1):226–242CrossRefGoogle Scholar
  29. 29.
    Jehlicka J, Frank O, Hamplova V, Pokorna Z, Juha L, Bohacek Z, Weishauptova Z (2005) Low extraction recovery of fullerene from carbonaceous geological materials spiked with C-60. Carbon 43(9):1909–1917CrossRefGoogle Scholar
  30. 30.
    Becker L, Bada JL, Winans RE, Bunch TE (1994) Fullerenes in Allende Meteorite. Nature 372(6506):507–507CrossRefGoogle Scholar
  31. 31.
    Xia XR, Monteiro-Riviere NA, Riviere JE (2006) Trace analysis of fullerenes in biological samples by simplified liquid-liquid extraction and high-performance liquid chromatography. J Chromatogr A 1129(2):216–222CrossRefGoogle Scholar
  32. 32.
    Dams R, Huestis MA, Lambert WE, Murphy CM (2003) Matrix effect in bio-analysis of illicit drugs with LC-MS/MS: influence of ionization type, sample preparation, and biofluid. J Am Soc Mass Spectrom 14(11):1290–1294CrossRefGoogle Scholar
  33. 33.
    Kraemer T, Maurer HH (1998) Determination of amphetamine, methamphetamine and amphetamine-derived designer drugs or medicaments in blood and urine. J Chromatogr B 713(1):163–187CrossRefGoogle Scholar
  34. 34.
    Pratt DA, Daniloff Y, Duncan A, Robins SP (1992) Automated-analysis of the pyridinium cross-links of collagen in tissue and urine using solid-phase extraction and reversed-phase high-performance liquid chromatography. Anal Biochem 207(1):168–175CrossRefGoogle Scholar
  35. 35.
    Chen Z, Westerhoff P, Herckes P (2008) Quantification of C60 fullerene concentrations in water. Environ Toxicol Chem 1Google Scholar
  36. 36.
    Wang C, Shang C, Westerhoff P (2010) Quantification of fullerene aggregate nC60 in wastewater by high-performance liquid chromatography with UV-vis spectroscopic and mass spectrometric detection. Chemosphere 80(3):334–339CrossRefGoogle Scholar
  37. 37.
    Brant J, Lecoanet H, Hotze M, Wiesner M (2005) Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures. Environ Sci Technol 39(17):6343–6351CrossRefGoogle Scholar
  38. 38.
    Chen KL, Elimelech M (2009) Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties. Environ Sci Technol 43(19):7270–7276CrossRefGoogle Scholar
  39. 39.
    Dugan LL, Turetsky DM, Du C, Lobner D, Wheeler M, Almli CR, Shen CK, Luh TY, Choi DW, Lin TS (1997) Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci U S A 94(17):9434–9439CrossRefGoogle Scholar
  40. 40.
    Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF (1991) Radical reactions of C60. Science 254(5035):1183–1185CrossRefGoogle Scholar
  41. 41.
    McEwen CN, Mckay RG, Larsen BS (1992) C-60 as a radical sponge. J Am Chem Soc 114(11):4412–4414CrossRefGoogle Scholar
  42. 42.
    Xiao L, Takada H, Gan X, Miwa N (2006) The water-soluble fullerene derivative “Radical Sponge” exerts cytoprotective action against UVA irradiation but not visible-light-catalyzed cytotoxicity in human skin keratinocytes. Bioorg Med Chem Lett 16(6):1590–1595CrossRefGoogle Scholar
  43. 43.
    Lee J, Song W, Jang SS, Fortner JD, Alvarez PJ, Cooper WJ, Kim JH (2010) Stability of water-stable C60 clusters to OH radical oxidation and hydrated electron reduction. Environ Sci Technol 44(10):3786–3792CrossRefGoogle Scholar
  44. 44.
    Heymann D (2004) Ozonides and oxide C-60 and C-70: a review. Fuller Nanotubes Carbon Nanostruct 12(4):715–729CrossRefGoogle Scholar
  45. 45.
    Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557CrossRefGoogle Scholar
  46. 46.
    Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Moller P (2009) Oxidatively damaged DNA in rats exposed by oral gavage to C-60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect 117(5):703–708Google Scholar
  47. 47.
    Fang J, Lyon DY, Wiesner MR, Dong J, Alvarez PJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41(7):2636–2642CrossRefGoogle Scholar
  48. 48.
    Qiao R, Roberts AP, Mount AS, Klaine SJ, Ke PC (2007) Translocation of C60 and its derivatives across a lipid bilayer. Nano Lett 7(3):614–619CrossRefGoogle Scholar
  49. 49.
    Santa T, Yoshioka D, Homma H, Imai K, Satoh M, Takayanagi I (1995) High-performance liquid-chromatography of fullerence (C-60) in plasma using ultraviolet and mass-spectrometric detection. Biol Pharm Bull 18(9):1171–1174Google Scholar
  50. 50.
    Isaacson CW, Usenko CY, Tanguay RL, Field JA (2007) Quantification of fullerenes by LC/ESI-MS and its application to in vivo toxicity assays. Anal Chem 79(23):9091–9097CrossRefGoogle Scholar
  51. 51.
    Guzman KA, Taylor MR, Banfield JF (2006) Environmental risks of nanotechnology: National Nanotechnology Initiative funding, 2000-2004. Environ Sci Technol 40(5):1401–1407CrossRefGoogle Scholar
  52. 52.
    Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2009) Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ Sci Technol 43(3):597–603CrossRefGoogle Scholar
  53. 53.
    Johnson AC, Sumpter JP (2001) Removal of endocrine-disrupting chemicals in activated sludge treatment works. Environ Sci Technol 35(24):4697–4703CrossRefGoogle Scholar
  54. 54.
    Kuch HM, Ballschmiter K (2001) Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environ Sci Technol 35(15):3201–3206CrossRefGoogle Scholar
  55. 55.
    Isaacson CW, Bouchard D (2010) Asymmetric flow field flow fractionation of aqueous C60 nanoparticles with size determination by dynamic light scattering and quantification by liquid chromatography atmospheric pressure photo-ionization mass spectrometry. J Chromatogr A 1217(9):1506–1512CrossRefGoogle Scholar
  56. 56.
    Brant J, Lecoanet H, Wiesner MR (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7(4–5):545–553CrossRefGoogle Scholar
  57. 57.
    Ma X, Bouchard D (2009) Formation of aqueous suspensions of fullerenes. Environ Sci Technol 43(2):330–336CrossRefGoogle Scholar
  58. 58.
    Birch ME, Cary RA (1996) Elemental carbon-based method for occupational monitoring of particulate diesel exhaust: methodology and exposure issues. Analyst 121(9):1183–1190CrossRefGoogle Scholar
  59. 59.
    Hyung H, Fortner JD, Hughes JB, Kim JH (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41(1):179–184CrossRefGoogle Scholar
  60. 60.
    Tsuchiya T, Yamakoshi YN, Miyata N (1995) A novel promoting action of fullerene C60 on the chondrogenesis in rat embryonic limb bud cell culture system. Biochem Biophys Res Commun 206(3):885–894CrossRefGoogle Scholar
  61. 61.
    Wenzler-Rottele S, Dettenkofer M, Schmidt-Eisenlohr E, Gregersen A, Schulte-Monting J, Tvede M (2006) Comparison in a laboratory model between the performance of a urinary closed system bag with double non-return valve and that of a single valve system. Infection 34(4):214–218CrossRefGoogle Scholar
  62. 62.
    Gosetti F, Mazzucco E, Zampieri D, Gennaro MC (2010) Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1217(25):3929–3937CrossRefGoogle Scholar
  63. 63.
    Heymann D, Bachilo SM, Weisman RB (2002) Ozonides, epoxides, and oxidoannulenes of C-70. J Am Chem Soc 124(22):6317–6323CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Troy M. Benn
    • 1
  • Benny F. G. Pycke
    • 2
  • Pierre Herckes
    • 3
  • Paul Westerhoff
    • 1
  • Rolf U. Halden
    • 2
  1. 1.School of Sustainable Engineering and the Built EnvironmentArizona State UniversityTempeUSA
  2. 2.Center for Environmental Biotechnology, The Biodesign InstituteArizona State UniversityTempeUSA
  3. 3.Department of Chemistry and BiochemistryArizona State UniversityTempeUSA

Personalised recommendations