Analytical and Bioanalytical Chemistry

, Volume 399, Issue 4, pp 1689–1697 | Cite as

3-Deoxygalactosone, a new glucose degradation product in peritoneal dialysis fluids: Identification, quantification by HPLC/DAD/MSMS and its pathway of formation

  • Stefan Mittelmaier
  • Michael Fünfrocken
  • Dominik Fenn
  • Monika Pischetsrieder
Original Paper

Abstract

Heat sterilization of peritoneal dialysis (PD) fluids leads to the formation of glucose degradation products (GDPs), which considerably impair long-term application of PD. Knowledge of the exact composition of GDPs present in a PD fluid is important to improve the biocompatibility of dialysis solutions. The present study conducted a targeted screening for novel GDPs with α-dicarbonyl structure in PD fluids. Thus, 3-deoxygalactosone (3-DGal) was identified for the first time in PD fluids. Quantification of 3-DGal was achieved by high-performance liquid chromatography (HPLC)/DAD/MSMS after derivatization with o-phenylendiamine to yield the quinoxaline derivative. Baseline separation of all α-dicarbonyl GDPs, particularly of the diastereomers 3-deoxyglucosone (3-DG) and 3-DGal, required the application of a polar, phenyl-based RP column for HPLC and additional pH-gradient elution. Concentrations of 3-DGal ranged between 55.8 and 136.9 μM in single-chamber PD fluids, and between 2.5 and 12.4 μM in double-chamber PD fluids. In solutions containing glucose, 3-DGal is formed from 3-DG via the intermediate 3,4-dideoxyglucosone-3-ene (3,4-DGE). Further studies are now required to determine the (patho-)physiological properties of 3-DGal.

Figure

Unexpected formation of 3-deoxygalactosone from glucose in peritoneal dialysis fluids

Keywords

[alpha]-Dicarbonyl compounds Glucose degradation products (GDPs) 3-Deoxygalactosone (3-DGal) HPLC Peritoneal dialysis fluid Quinoxaline derivatives 

Notes

Acknowledgment

The study was supported by Fresenius Medical Care Deutschland GmbH, Germany.

References

  1. 1.
    Dobbie JW (1992) Pathogenesis of peritoneal fibrosing syndromes (sclerosing peritonitis) in peritoneal dialysis. Perit Dial Int 12:14–27Google Scholar
  2. 2.
    Rippe B, Simonsen O, Heimbürger O, Christensson A, Haraldsson B, Stelin G, Weiss L, Nielsen F-D, Bro S, Friedberg M, Wieslander A (2001) Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int 59:348–357CrossRefGoogle Scholar
  3. 3.
    Williams JD, Topley N, Craig KJ, Mackenzie RK, Pischetsrieder M, Lage C, Passlick-Deetjen J (2004) The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int 66:408–418CrossRefGoogle Scholar
  4. 4.
    Nilsson-Thorell CB, Muscalu N, Andren AH, Kjellstrand PT, Wieslander AP (1993) Heat sterilization of fluids for peritoneal dialysis gives rise to aldehydes. Perit Dial Int 13:208–213Google Scholar
  5. 5.
    Tauer A, Knerr T, Niwa T, Schaub TP, Lage C, Passlick-Deetjen J, Pischetsrieder M (2001) In vitro formation of N[epsilon]-(carboxymethyl)lysine and imidazolones under conditions similar to continuous ambulatory peritoneal dialysis. Biochem Biophys Res Commun 280:1408–1414CrossRefGoogle Scholar
  6. 6.
    Schalkwijk CG, Posthuma N, Brink HJ, Ter Wee PM, Teerlink T (1999) Induction of 1, 2-dicarbonyl compounds, intermediates in the formation of advanced glycation end-products, during heat-sterilization of glucose-based peritoneal dialysis fluids. Perit Dial Int 19:325–333Google Scholar
  7. 7.
    Mahiout A, Ehlerding G, Brunkhorst R (1996) Advanced glycation end-products in the peritoneal fluid and in the peritoneal membrane of continuous ambulant peritoneal dialysis patients. Nephrol Dial Transplant 11:2–6Google Scholar
  8. 8.
    Nakayama M, Kawaguchi Y, Yamada K, Hasegawa T, Takazoe K, Katoh N, Hayakawa H, Osaka N, Yamamoto H, Ogawa A, Kubo H, Shigematsu T, Sakai O, Horiuchi S (1997) Immunohistochemical detection of advanced glycosylation end-products in the peritoneum and its possible pathophysiological role in CAPD. Kidney Int 51:182–186CrossRefGoogle Scholar
  9. 9.
    Nakamura S, Tobita K, Tachikawa T, Akamatsu S, Ohno Y, Kan A, Katsuragawa M, Yasumura K, Miyazaki S, Sakai S, Morita T, Hirashawa Y, Niwa T (2003) Immunohistochemical detection of an AGE, a ligand for macrophage receptor, in peritoneum of CAPD patients. Kidney Int Suppl 84:S152–157CrossRefGoogle Scholar
  10. 10.
    Witowski J, Bender TO, Gahl GM, Frei U, Jorres A (2001) Glucose degradation products and peritoneal membrane function. Perit Dial Int 21:201–205Google Scholar
  11. 11.
    Morgan LW, Wieslander A, Davies M, Horiuchi T, Ohta Y, Beavis MJ, Craig KJ, Williams JD, Topley N (2003) Glucose degradation products (GDP) retard remesothelialization independently of d-glucose concentration. Kidney Int 64:1854–1866CrossRefGoogle Scholar
  12. 12.
    Tomo T, Okabe E, Yamamoto T, Namoto S, Iwashita T, Matsuyama K, Kadota J, Nasu M (2005) Synergistic cytotoxicity of acidity and 3, 4-dideoxyglucosone-3-ene under the existence of lactate in peritoneal dialysis fluid. Ther Apher Dial 9:182–187CrossRefGoogle Scholar
  13. 13.
    Lee D-H, Choi S-Y, Ryu H-M, Kim C-D, Park S-H, Chung H-Y, Kim I-S, Kim Y-L (2009) 3, 4-Dideoxyglucosone-3-ene induces apoptosis in human peritoneal mesothelial cells. Perit Dial Int 29:44–51Google Scholar
  14. 14.
    Linden T, Musi B, Järkelid L, Forsbäck G, Kjellstrand P, Deppisch R, Wieslander A (2001) Glucose degradation products in peritoneal dialysis fluids may have both local and systemic effects: a study of residual fluid and mesothelial cells. Perit Dial Int 21:607–610Google Scholar
  15. 15.
    Tauer A, Bender TO, Fleischmann EH, Niwa T, Jörres A, Pischetsrieder M (2005) Fate of the glucose degradation products 3-deoxyglucosone and glyoxal during peritoneal dialysis. Mol Nutr Food Res 49:710–715CrossRefGoogle Scholar
  16. 16.
    Forbes JM, Cooper ME, Oldfield MD, Thomas MC (2003) Role of advanced glycation end products in diabetic nephropathy. J Am Soc Nephrol 14:S254–S258CrossRefGoogle Scholar
  17. 17.
    Yamagishi S-I, Inagaki Y, Okamoto T, Amano S, Koga K, Takeuchi M (2003) Advanced glycation end products inhibit de novo protein synthesis and induce TGF-β overexpression in proximal tubular cells. Kidney Int 63:464–473CrossRefGoogle Scholar
  18. 18.
    Lee HY, Park HC, Seo BJ, Do JY, Yun SR, Song HY, Kim YH, Kim YL, Kim DJ, Kim YS, Ahn C, Kim MJ, Shin SK (2005) Superior patient survival for continuous ambulatory peritoneal dialysis patients treated with a peritoneal dialysis fluid with neutral pH and low glucose degradation product concentration (balance). Perit Dial Int 25:248–255Google Scholar
  19. 19.
    Mortier S, Faict D, Lameire NH, Vriese AS (2005) Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int 67:1559–1565CrossRefGoogle Scholar
  20. 20.
    Linden T, Forsback G, Deppisch R, Henle T, Wieslander A (1998) 3-Deoxyglucosone, a promoter of advanced glycation end products in fluids for peritoneal dialysis. Perit Dial Int 18:290–293Google Scholar
  21. 21.
    Linden T, Cohen A, Deppisch R, Kjellstrand P, Wieslander A (2002) 3, 4-Dideoxyglucosone-3-ene (3, 4-DGE): a cytotoxic glucose degradation product in fluids for peritoneal dialysis. Kidney Int 62:697–703CrossRefGoogle Scholar
  22. 22.
    Frischmann M, Spitzer J, Fünfrocken M, Mittelmaier S, Deckert M, Fichert T, Pischetsrieder M (2009) Development and validation of an HPLC method to quantify 3, 4-dideoxyglucosone-3-ene in peritoneal dialysis fluids. Biomed Chromatogr 23:843–851CrossRefGoogle Scholar
  23. 23.
    Mittelmaier S, Fünfrocken M, Fenn D, Fichert T, Pischetsrieder M (2010) Identification and quantification of the glucose degradation product glucosone in peritoneal dialysis fluids by HPLC/DAD/MSMS. J Chromatogr B Anal Technol Biomed Life Sci 878:877–882CrossRefGoogle Scholar
  24. 24.
    Witowski J, Korybalska K, Wisniewska J, Breborowicz A, Gahl GM, Frei U, Passlick-Deetjen J, Jorres A (2000) Effect of glucose degradation products on human peritoneal mesothelial cell function. J Am Soc Nephrol 11:729–739Google Scholar
  25. 25.
    Madson MA, Feather MS (1981) An improved preparation of 3-deoxy–erythro-hexos-2-ulose via the bis(benzoylhydrazone) and some related constitutional studies. Carbohydr Res 94:183–191CrossRefGoogle Scholar
  26. 26.
    Gobert J, Glomb MA (2009) Degradation of glucose: reinvestigation of reactive α-dicarbonyl compounds. J Agric Food Chem 57:8591–8597CrossRefGoogle Scholar
  27. 27.
    Marceau E, Yaylayan VA (2009) Profiling of α-dicarbonyl content of commercial honeys from different botanical origins: identification of 3, 4dideoxyglucoson-3-ene (3, 4-DGE) and related compounds. J Agric Food Chem 57:10837–10844CrossRefGoogle Scholar
  28. 28.
    Pfeifer YV, Kroh LW (2010) Investigation of reactive α-dicarbonyl compounds generated from the Maillard reactions of l-methionine with reducing sugars via their stable quinoxaline derivatives. J Agric Food Chem 58:8293–8299CrossRefGoogle Scholar
  29. 29.
    Bravo A, Herrera JC, Scherer E, Ju-Nam Y, Rübsam H, Madrid J, Zufall C, Rangel-Aldao R (2008) Formation of alpha-dicarbonyl compounds in beer during storage of Pilsner. J Agric Food Chem 56:4134–4144CrossRefGoogle Scholar
  30. 30.
    Hellwig M, Degen J, Henle T (2010) 3-Deoxygalactosone, a “new” 1, 2-dicarbonyl compound in milk products. J Agric Food Chem. doi: 10.1021/jf102388v Google Scholar
  31. 31.
    Anet EFLJ (1964) 3-Deoxyglycosuloses (3-deoxyglycosones) and the degradation of carbohydrates. Adv Carbohydr Chem 19:181–218Google Scholar
  32. 32.
    Wieslander AP, Deppisch R, Svensson E, Forsback G, Speidel R, Rippe B (1995) In vitro biocompatibility of a heat-sterilized, low-toxic, and less acidic fluid for peritoneal dialysis. Perit Dial Int 15:158–164Google Scholar
  33. 33.
    Erixon M, Wieslander A, Linden T, Carlsson O, Forsback G, Svensson E, Jonsson JA, Kjellstrand P (2006) How to avoid glucose degradation products in peritoneal dialysis fluids. Perit Dial Int 26:490–497Google Scholar
  34. 34.
    Zimmeck T, Tauer A, Fuenfrocken M, Pischetsrieder M (2002) How to reduce 3-deoxyglucosone and acetaldehyde in peritoneal dialysis fluids. Perit Dial Int 22:350–356Google Scholar
  35. 35.
    Krishnan M, Tam P, Wu G, Breborowicz A, Oreopoulos DG (2005) Glucose degradation products (GDP’s) and peritoneal changes in patients on chronic peritoneal dialysis: will new dialysis solutions prevent these changes? Int Urol Nephrol 37:409–418CrossRefGoogle Scholar
  36. 36.
    Ahmad M, Shah H, Pliakogiannis T, Oreopoulos D (2007) Prevention of membrane damage in patient on peritoneal dialysis with new peritoneal dialysis solutions. Int Urol Nephrol 39:299–312CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Stefan Mittelmaier
    • 1
  • Michael Fünfrocken
    • 2
  • Dominik Fenn
    • 2
  • Monika Pischetsrieder
    • 1
  1. 1.Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer CenterUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Fresenius Medical Care Deutschland GmbHSt.WendelGermany

Personalised recommendations