Analytical and Bioanalytical Chemistry

, Volume 399, Issue 3, pp 1117–1125

Compact, cost-efficient microfluidics-based stopped-flow device

  • Regina Bleul
  • Marion Ritzi-Lehnert
  • Julian Höth
  • Nico Scharpfenecker
  • Ines Frese
  • Dominik Düchs
  • Sabine Brunklaus
  • Thomas E. Hansen-Hagge
  • Franz-Josef Meyer-Almes
  • Klaus S. Drese
Original Paper

Abstract

Stopped-flow technology is frequently used to monitor rapid (bio)chemical reactions with high temporal resolution, e.g., in dynamic investigations of enzyme reactions, protein interactions, or molecular transport mechanisms. However, conventional stopped-flow devices are often overly complex, voluminous, or costly. Moreover, excessive amounts of sample are often wasted owing to inefficient designs. To address these shortcomings, we propose a stopped-flow system based on microfluidic design principles. Our simple and cost-efficient approach offers distinct advantages over existing technology. In particular, the use of injection-molded disposable microfluidic chips minimizes required sample volumes and associated costs, simplifies handling, and prevents adverse cross-contamination effects. The cost of the system developed is reduced by an order of magnitude compared with the cost of commercial systems. The system contains a high-precision valve system for fluid control and features automated data acquisition capability with high temporal resolution. Analyses with two well-established reaction kinetics yielded a dead time of approximately 8-9 ms.

Keywords

Stopped flow Microfluidics Low sample amounts Short dead time 

References

  1. 1.
    Chance B (1940) J Franklin Inst 229:455–613CrossRefGoogle Scholar
  2. 2.
    Gibson QH, Milnes L (1964) Biochem J 91:161Google Scholar
  3. 3.
    Sykora J, Meyer-Almes FJ (2010) Biochemistry 49(7):1418–1424CrossRefGoogle Scholar
  4. 4.
    Gabibov AG, Kochetkov SN, Sashchenko LP, Smirnov IV, Timofeev VP, Severin ES (1983) Eur J Biochem 132(2):339–344CrossRefGoogle Scholar
  5. 5.
    Biro FN, Zhai J, Doucette CW, Hingorani MM (2010) J Vis Exp (37):1874, doi:10.3791/1874
  6. 6.
    Kern S, Riester D, Hildmann C, Schwienhorst A, Meyer-Almes FJ (2007) FEBS J 274(14):3578–3588CrossRefGoogle Scholar
  7. 7.
    Nienhaus U (2005) Protein-ligand interactions – methods and applications. Humana, TotowaCrossRefGoogle Scholar
  8. 8.
    Tonomura B, Nakatani H, Ohnishi M, Yamaguchi-Ito J, Hiromi K (1978) Anal Biochem 84:370–383CrossRefGoogle Scholar
  9. 9.
    Peterman BF (1979) Anal Biochem 93:442–444CrossRefGoogle Scholar
  10. 10.
    Guo M, Bhaskar B, Li H, Barrows TL, Poulos TL (2004) Proc Natl Acad Sci USA 101(16):5940–5945CrossRefGoogle Scholar
  11. 11.
    van Dael H (2003) Protein Sci 12:609–619CrossRefGoogle Scholar
  12. 12.
    Zhang HJ, Sheng XR, Niu WD, Pan XM, Zhou JM (1998) J Biol Chem 273:7448–7456CrossRefGoogle Scholar
  13. 13.
    Stumps MR, Gloss LM (2008) J Mol Biol 384:1369–1383CrossRefGoogle Scholar
  14. 14.
    Engel MFM, van Mierlo CPM, Visser AJWG (2002) J Biol Chem 277:10922–10930CrossRefGoogle Scholar
  15. 15.
    BioLogic (2010) Bio-Logic - rapid-mixing instruments. http://www.bio-logic.info/rapid-kinetics/rmi.html. Accessed 14 Sep 2010
  16. 16.
    TgK Scientific (2010) High-pressure stopped-flow. http://www.hi-techsci.com/products/highpressure. Accessed 14 Sep 2010
  17. 17.
    Kobayashi K, Yoshioka S, Kato Y, Asano Y, Aono S (2005) J Biol Chem 280:5486–5490CrossRefGoogle Scholar
  18. 18.
    Fan YX, Zhou JM, Kihara H, Tsou CL (1998) Protein Sci 7:2631–2641CrossRefGoogle Scholar
  19. 19.
    Stein S, Böhlen P, Udenfriend S (1974) Arch Biochem Biophys 163:400–403CrossRefGoogle Scholar
  20. 20.
    Brown L, Koerner T, Horton JH, Oleschuk RD (2006) Lab Chip 6:66–73CrossRefGoogle Scholar
  21. 21.
    Hardt S, Drese KS, Hessel V, Schönfeld F (2005) Microfluid Nanofluid 1:108–118CrossRefGoogle Scholar
  22. 22.
    Green J, Holdo AE, Khan A (2007) Int J Multiphys 1(1):1–32CrossRefGoogle Scholar
  23. 23.
    Nguyen NT, Wu Z (2005) J Micromech Microeng 15:R1–R16CrossRefGoogle Scholar
  24. 24.
    Hessel V, Löwe H, Schönfeld F (2005) Chem Eng Sci 60:2479–2501CrossRefGoogle Scholar
  25. 25.
    Falk L, Commenge JM (2010) Chem Eng Sci 65:405–411CrossRefGoogle Scholar
  26. 26.
    Berger RL, Balko B, Chapman HF (1968) Rev Sci Instrum 39:493–498CrossRefGoogle Scholar
  27. 27.
    Mansur EA, Mingxing YE, Yundong W, Youyuan D (2008) Chin J Chem Eng 16(4):503–516CrossRefGoogle Scholar
  28. 28.
    Bothe D, Stemich C, Warnecke HJ (2006) Chem Eng Sci 61:2950–2958CrossRefGoogle Scholar
  29. 29.
    Reynisson E, Josefsen MH, Krause M, Hoorfar J (2006) J Microbiol Methods 66(2):206–216CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Regina Bleul
    • 1
    • 2
  • Marion Ritzi-Lehnert
    • 1
  • Julian Höth
    • 1
  • Nico Scharpfenecker
    • 1
  • Ines Frese
    • 1
  • Dominik Düchs
    • 1
  • Sabine Brunklaus
    • 1
  • Thomas E. Hansen-Hagge
    • 1
  • Franz-Josef Meyer-Almes
    • 2
  • Klaus S. Drese
    • 1
  1. 1.Institut für Mikrotechnik Mainz GmbH (IMM)MainzGermany
  2. 2.Hochschule DarmstadtDarmstadtGermany

Personalised recommendations