Advertisement

Analytical and Bioanalytical Chemistry

, Volume 400, Issue 2, pp 353–360 | Cite as

Study of the toxicity of sulfamethoxazole and its degradation products in water by a bioluminescence method during application of the electro-Fenton treatment

  • A. Dirany
  • S. Efremova Aaron
  • N. Oturan
  • I. Sirés
  • M. A. Oturan
  • J. J. AaronEmail author
Original Paper

Abstract

Sulfamethoxazole (SMX) is a synthetic antibiotic widely applied as a bacteriostatic drug to treat a number of diseases. SMX can persist in the environment for long periods of time because of its low biodegradability, which may result in various, direct and indirect, toxicological effects on the environment and on human health. Therefore, we have developed the electrochemical advanced oxidation process (AOP) “electro-Fenton” to degrade SMX in aqueous media. In this work, a detailed study of the evolution of toxicity of SMX and its degradation products in aqueous solutions, during treatment by the electro-Fenton AOP, is described, using the bioluminescence Microtox® method, based on the inhibition of luminescence of marine bacteria Vibrio fischeri. Samples were collected at various electrolysis times and analyzed by HPLC for quantifying the evolution of the degradation products, and their toxicity was measured by the Microtox® method. Our results demonstrated that the toxicity of SMX aqueous solutions varied considerably with the electrolysis time and the applied current intensity. This phenomenon could be explained by the formation and disappearance of several degradation products, including cyclic and/or aromatic intermediates, and short-chain acid carboxylic acids, having a toxicity different of the initial antibiotic. The curves of the % of bacterial luminescence inhibition vs. electrolysis time, corresponding to the evolution of the toxicity of the formed degradation products, were investigated and tentatively interpreted.

Figure

Effect of the applied electrolysis current intensity on the evolution of the V. fischeri bacteria luminescence inhibition with time during the electro-Fenton process of SMX aqueous solutions, after an exposure time of 15 min

Keywords

Sulfamethoxazole Electro-Fenton Toxicity Bioluminescence Microtox® method 

Notes

Acknowledgments

A. Dirany thanks the French government (Ministère de l’Enseignement Supérieur et de la Recherche) for a Ph.D grant. S. Efremova Aaron thanks the University of Paris-Est for financial support.

References

  1. 1.
    Fenet H, Gomez E, Leclerc M, Casellas C (2006) Environ Risques Santé 5:243–247Google Scholar
  2. 2.
    Andreozzi R, Marotta R, Praéxus NA (2003) Chemosphere 50:1319–1330CrossRefGoogle Scholar
  3. 3.
    Göbel A, Mc Ardell CS, Joss B, Siegrist H, Giger W (2007) Sci Total Environ 372:361–371CrossRefGoogle Scholar
  4. 4.
    Herber T (2002) Toxicol Lett 131:5–17CrossRefGoogle Scholar
  5. 5.
    Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Sci Total Environ 225:109–118CrossRefGoogle Scholar
  6. 6.
    Boxall AB, Blackwell P, Cavallo R, Kay P, Tolls J (2002) Toxicol Lett 131:19–28CrossRefGoogle Scholar
  7. 7.
    Blackwell PA, Boxall ABA, Kay P, Noble H (2005) J Agric Food Chem 53:2192–2201CrossRefGoogle Scholar
  8. 8.
    Watkinson AJ, Murby EJ, Costanzo SD (2007) Water Res 41:4164–4176CrossRefGoogle Scholar
  9. 9.
    Boxall AB, Fogg LA., Baird DJ, Lewis C, Telfer TC, Kolpin D, Gravell A, (2005) Targeted monitoring study for veterinary medicines in the UK environment. Final report to the UK environmental agencyGoogle Scholar
  10. 10.
    Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Environ Sci Technol 36:1202–1211CrossRefGoogle Scholar
  11. 11.
    Rabiet M, Togola A, Brissaud F, Seidel JL, Budzinski H, Elbaz-Poulichet F (2006) Environ Sci Technol 40:5282–5288CrossRefGoogle Scholar
  12. 12.
    Togola A, Budzinski HJ (2008) J Chromatogr A 1177:150–158CrossRefGoogle Scholar
  13. 13.
    Levi Y (2006) Environ Risques Santé 5:261–265Google Scholar
  14. 14.
    Ash RJ, Mauck B, Morgan M (2002) US Emerg Infect Dis 8:713–716Google Scholar
  15. 15.
    Khetan SK, Collins TJ (2007) Chem Rev 107:2319–2364CrossRefGoogle Scholar
  16. 16.
    Henney CR (ed) (1986) A handbook of drugs, 2nd edn. Churchill Livingston, EdinburghGoogle Scholar
  17. 17.
    Sharma VK, Mishra SK, Ray AJ (2006) Chemosphere 62:128–134CrossRefGoogle Scholar
  18. 18.
    Dantas RF, Contreras S, Sans C, Esplugas S (2008) J Hazard Mater 150:790–794CrossRefGoogle Scholar
  19. 19.
    Hu L, Flanders PM, Miller PL, Strathmann TJ (2007) Water Res 41:2612–2626CrossRefGoogle Scholar
  20. 20.
    Beltrán FJ, Aguinaco A, García-Araya JF (2009) Water Res 43:1359–1369CrossRefGoogle Scholar
  21. 21.
    Trovó AG, Nogueira RFP, Agüera A, Sirtori C, Fernandez-Alba AR (2009) Chemosphere 77:1292–1298CrossRefGoogle Scholar
  22. 22.
    González O, Sans C, Esplugas S (2007) J Hazard Mater 146:459–464CrossRefGoogle Scholar
  23. 23.
    Trovó AG, Nogueira RFP, Agüera A, Fernandez-Alba AR, Sirtori C, Malato S (2009) Water Res 43:3922–3931CrossRefGoogle Scholar
  24. 24.
    Li S, Bejan D, McDowell MS, Bunce NJ (2008) J Appl Electrochem 38:151–159CrossRefGoogle Scholar
  25. 25.
    Boudreau J, Bejan D, Li S, Bunce NJ (2010) Ind Eng Chem Res 49:2537–2542CrossRefGoogle Scholar
  26. 26.
    Dirany A, Sirés I, Oturan N, Oturan MA, Chemosphere (2010), in press, doi:  10.1016/j.chemosphere.2010.08.032
  27. 27.
    Dirany A, Efremova Aaron S, Oturan N, Sirés I, Aaron JJ, Oturan MA (2010) Luminescence 25:232–233Google Scholar
  28. 28.
    Oturan N, Trajkovska S, Oturan MA, Couderchet M, Aaron JJ (2008) Chemosphere 73:1550–1556CrossRefGoogle Scholar
  29. 29.
    Brillas E, Sirés I, Oturan MA (2009) Chem Rev 109:6570–6631CrossRefGoogle Scholar
  30. 30.
    Escher BI, Bramaz N, Eggen RIL, Richter M (2005) Environ Sci Technol 39:3090–3100CrossRefGoogle Scholar
  31. 31.
    Escher BI, Bramaz N, Maurer M, Richter M, Sutter D, von Kanel C, Zschokke M (2005) Environ Toxicol Chem 24:750–758CrossRefGoogle Scholar
  32. 32.
    Baran W, Sochacka J, Wardas W (2006) Chemosphere 65:1295–1299CrossRefGoogle Scholar
  33. 33.
    Wammer KH, Lapara TM, McNeill K, Arnold WA, Swackhamer DL (2006) Environ Toxicol 25:1480–1486Google Scholar
  34. 34.
    Santos A, Yustos P, Quintanilla A, García-Ochoa F, Casas JA, Rodríguez JJ (2004) Environ Sci Technol 38:133–138CrossRefGoogle Scholar
  35. 35.
    Kaiser KLE, Palabrica VS (1991) Water Pollut Res J Can 26:361–431Google Scholar
  36. 36.
    Zazo JA, Casas JA, Molina CB, Quintanilla A, Rodriguez JJ (2007) Environ Sci Technol 41:7164–7170CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • A. Dirany
    • 1
  • S. Efremova Aaron
    • 2
  • N. Oturan
    • 1
  • I. Sirés
    • 1
  • M. A. Oturan
    • 1
  • J. J. Aaron
    • 1
    Email author
  1. 1.Laboratoire Géomatériaux et Environnement (LGE)Université Paris-EstMarne la Vallée Cedex 2France
  2. 2.Department of Medical Biochemistry, Medical FacultySv. Ciril & Metodius UniversitySkopjeMacedonia

Personalised recommendations