Advertisement

Analytical and Bioanalytical Chemistry

, Volume 399, Issue 9, pp 3177–3191 | Cite as

Cuticular lipids of insects as potential biofungicides: methods of lipid composition analysis

  • Marek GołębiowskiEmail author
  • Mieczysława I. Boguś
  • Monika Paszkiewicz
  • Piotr Stepnowski
Review

Abstract

The main function of cuticular lipids in insects is the restriction of water transpiration through the surface. Lipids are involved in various types of chemical communication between species and reduce the penetration of insecticides, chemicals, and toxins and they also provide protection from attack by microorganisms, parasitic insects, and predators. Hydrocarbons, which include straight-chain saturated, unsaturated, and methyl-branched hydrocarbons, predominate in the cuticular lipids of most insect species; fatty acids, alcohols, esters, ketones, aldehydes, as well as trace amounts of epoxides, ethers, oxoaldehydes, diols, and triacylglycerols have also been identified. Analyses of cuticular lipids are chemically relatively straightforward, and methods for their extraction should be simple. Classically, extraction has relied mainly on application of apolar solvents to the entire insect body. Recently, several alternative methods have been employed to overcome some of the shortcomings of solvent extraction. These include the use of solid-phase microextraction (SPME) fibers to extract hydrocarbons from the headspace of heated samples, SPME to sample live individuals, and a less expensive method (utilized for social wasps), which consists of the collection of cuticular lipids by means of small pieces of cotton rubbed on the body of the insect. Both classical and recently developed extraction methods are reviewed in this work. The separation and analysis of the insect cuticular lipids were performed by column chromatography, thin-layer chromatography (TLC), high performance liquid chromatography with a laser light scattering detector (HPLC-LLSD), gas chromatography (GC), and GC–mass spectrometry (MS). The strategy of lipid analysis with the use of chromatographic techniques was as follows: extraction of analytes from biological material, lipid class separation by TLC, column chromatography, HPLC-LLSD, derivatization, and final determination by GC, GC-MS, matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) MS, and liquid chromatography–mass spectrometry (LC-MS).

Keywords

Cuticular lipids of insects High-performance liquid chromatography with a laser light scattering detector Gas chromatography Gas chromatography–mass spectrometry 

Notes

Acknowledgement

Financial support was provided by the Polish Ministry of Research and Higher Education under grants N N303 504238 and DS 8200-4-0085-10.

References

  1. 1.
    Buckner JS, Nelson DR, Mardaus MC (1994) Insect Biochem Mol Biol 24:977–987Google Scholar
  2. 2.
    Nelson DR, Buckner JS, Fatland CL (1994) Comp Biochem Biophys 109B:293–303Google Scholar
  3. 3.
    Buckner JS, Hagen MM, Nelson DR (1999) Comp Biochem Physiol 124B:201–207Google Scholar
  4. 4.
    Nelson DR, Tissot M, Nelson LJ, Fatland CL, Gordon DM (2001) Comp Biochem Physiol 128B:575–595Google Scholar
  5. 5.
    Gołębiowski M, Maliński E, Boguś MI, Kumirska J, Stepnowski P (2008) Insect Biochem Mol Biol 38:619–627Google Scholar
  6. 6.
    Gołębiowski M, Maliński E, Nawrot J, Szafranek J, Stepnowski P (2007) Comp Biochem Physiol 147B:288–292Google Scholar
  7. 7.
    Gołębiowski M, Maliński E, Nawrot J, Stepnowski P (2008) J Stor Prod Res 44:386–388Google Scholar
  8. 8.
    Lapointe SL, Hunter WB, Alessandro RT (2004) Agric Forest Entomol 6:251–257Google Scholar
  9. 9.
    Howard RW, Lord JC (2003) J Chem Ecol 29:615–627Google Scholar
  10. 10.
    Said I, Costagliola G, Leoncinia I, Rivaulta C (2005) J Insect Physiol 51:995–1003Google Scholar
  11. 11.
    Gołębiowski M, Boguś MI, Paszkiewicz M, Stepnowski P (2010) J Insect Physiol 56:391–397Google Scholar
  12. 12.
    Jones TH, Moran MD, Hurd LE (1997) Comp Biochem Physiol 116B:419–422Google Scholar
  13. 13.
    Nelson DR, Charlet LD (2003) Comp Biochem Physiol 135B:273–284Google Scholar
  14. 14.
    Buckner JS, Pitts-Singer TL, Guédot C, Hagen MM, Fatland CL, Kemp WP (2009) Comp Biochem Physiol 153B:200–205Google Scholar
  15. 15.
    Carballeira NM (2008) Progr Lipid Res 47:50–61Google Scholar
  16. 16.
    Tighe SW, De Lajudie P, Dipietro K, Lindström K, Nick G, Jarvis BDW (2000) Int J Syst Evol Microbiol 50:787–801Google Scholar
  17. 17.
    Whittaker P, Fry FS, Curtis SK, AL-Khaldi SF, Mossoba MM, Yurawecz MP, Dunkel VC (2005) J Agric Food Chem 53:3735–3742Google Scholar
  18. 18.
    Whittaker P, Day JB, Curtis SK, Fry FS (2007) J AOAC Int 90:465–469Google Scholar
  19. 19.
    Tunlid A, White DC (1992) In: Stotzky JMBG (ed) Soil biochemistry, vol 7. Dekker, New York, pp 229–262Google Scholar
  20. 20.
    Ruess L, Höggblom MM, Garcia Zapata EJ, Dighton J (2002) Soil Biol Biochem 34:745–756Google Scholar
  21. 21.
    Tunlid A, White DC (1990) Analytical microbiology methods, chromatography and mass spectrometry. Plenum, New York, pp 259–274Google Scholar
  22. 22.
    van Dooremalen C, Ellers J (2010) J Insect Physiol 56:178–184Google Scholar
  23. 23.
    Khachatourians GG (1991) Handbook of applied mycology. CRC, Boca Raton, pp 613–663Google Scholar
  24. 24.
    Crespo R, Pedrini N, Juarez MP, Dal Bello GM (2008) Microbiol Res 163:148–151Google Scholar
  25. 25.
    Shah PA, Pell JK (2003) Appl Microbiol Biotechnol 61:413–423Google Scholar
  26. 26.
    Andersen SO (2004) Insect Biochem Mol Biol 34:1079–1087Google Scholar
  27. 27.
    Howard RW (1993) In: Stanley-Samuelson DW, Nelson DR (eds) Insect lipids: chemistry, biochemistry and biology. University of Nebraska Press, Lincoln, pp 179–226Google Scholar
  28. 28.
    Singer TL (1998) Am Zool 38:394–405Google Scholar
  29. 29.
    Lockey KH (1988) Comp Biochem Physiol 89B:595–645Google Scholar
  30. 30.
    Nelson DR, Blomquist JG (1995) In: Hamilton RJ (ed) Waxes: chemistry, molecular biology and functions. The Oily Press, Dundee, pp 1–90Google Scholar
  31. 31.
    St Leger R (1993) In: Beckage NE, Thompson SN, Federici BA (eds) Parasites and pathogens of insects. Academic, New York, pp 211–229Google Scholar
  32. 32.
    Boucias DG, Pendland JC (1984) J Invertebr Pathol 43:288–292Google Scholar
  33. 33.
    Gillespie JP, Bailey AM, Cobb B, Vilcinskas A (2000) Arch Insect Biochem Physiol 44:49–68Google Scholar
  34. 34.
    Vilcinskas A, Götz P (1999) Adv Parasitol 43:267–313Google Scholar
  35. 35.
    Boucias DG, Latge JP (1988) J Invertebr Pathol 51:168–171Google Scholar
  36. 36.
    El-Sayed GN, Ignoffo CM, Leathers TD (1991) Mycopathology 113:95–102Google Scholar
  37. 37.
    Wang C, Raymond J, St Leger RJ (2005) Eukaryot Cell 4:937–947Google Scholar
  38. 38.
    Thompson SN (1973) Comp Biochem Physiol 45B:467–482Google Scholar
  39. 39.
    Pedrini N, Crespo R, Juárez MP (2007) Comp Biochem Physiol 146 C:124–137Google Scholar
  40. 40.
    Boguś MI, Czygier M, Gołębiowski M, Kędra E, Kucińska J, Mazgajska J, Samborski J, Wieloch W, Włóka E (2010) Exp Parasitol 125:400–408Google Scholar
  41. 41.
    Kavanagh K, Fallon JP (2010) Fungal Biol Rev 24:79–83Google Scholar
  42. 42.
    Khachatourians GG (1996) Biochemistry and molecular biology of entomopathogenic fungi. Springer, Berlin, pp 331–363Google Scholar
  43. 43.
    Manning RJ, Callaghan AA (2008) Fungal Ecol 1:33–39Google Scholar
  44. 44.
    Szafranek B, Maliński E, Nawrot J, Sosnowska D, Ruszkowska M, Pihlaja K, Trumpakaj Z, Szafranek J (2001) Arch Org Chem 2:81–94Google Scholar
  45. 45.
    Kerwin JL (1982) J Gen Microbiol 128:2179–2186Google Scholar
  46. 46.
    Czygier M, Samborski J, Dzik JM, Wałajys-Rode E, Boguś MI (1998) Wiad Parazytol 44:502Google Scholar
  47. 47.
    Bania J, Samborski J, Boguś MI, Polanowski A (2006) Arch Insect Biochem Physiol 62:186–196Google Scholar
  48. 48.
    Wieloch W, Boguś MI (2007) Acta Biochim Polon 54:79Google Scholar
  49. 49.
    Clausen J (1972) Immunochemical techniques for the identification and estimation of macromolecules. North-Holland, AmsterdamGoogle Scholar
  50. 50.
    Boguś MI, Scheller K (2002) Acta Parasitol 47:66–72Google Scholar
  51. 51.
    James RR (2001) J Invertebr Pathol 77:99–107Google Scholar
  52. 52.
    Folch J, Lees M, Stanley GHS (1957) J Biol Chem 226:497–509Google Scholar
  53. 53.
    Blomquist GJ, Jackson LL (1973) J Insect Physiol 19:1639–1647Google Scholar
  54. 54.
    Dillwith JW, Adams TS, Blomquist GJ (1983) J Insect Physiol 29:377–386Google Scholar
  55. 55.
    Bligh EG, Dyer WJ (1959) Can J Biochem Physiol 39:911–917Google Scholar
  56. 56.
    Nelson DR, Freeman TP, Hoelmer BJS, KA JCG, Hagler JR (2003) Compar Biochem Physiol 136:343–356Google Scholar
  57. 57.
    Nelson DR, Freeman TP, Buckner JS (2000) Comp Biochem Physiol 125:265–278Google Scholar
  58. 58.
    Peeters C, Monnin T, Marlosse C (1999) Proc R Soc Lond B 266:1323–1327Google Scholar
  59. 59.
    Roux E, Sreng L, Provost E, Roux M, Clement JL (2002) J Chem Ecol 28:1221–1235Google Scholar
  60. 60.
    Sledge MF, Moneti G, Pieraccini G, Turillazzi S (2000) J Chromatogr A 873:73–77Google Scholar
  61. 61.
    Lacey ES, Ginzel MD, Millar JG, Hanks LM (2004) J Chem Ecol 30:1493–1507Google Scholar
  62. 62.
    Liebig J, Peeters C, Oldham NJ, Markstadter C (2000) Proc Natl Acad Sci USA 97:4124–4131Google Scholar
  63. 63.
    Tentschert J, Bestmann HJ, Heinze J (2002) Chemoecology 12:15–21Google Scholar
  64. 64.
    Everaerts C, Farine JP, Cobb M, Ferveu JF (2010) PLoS ONE 5:e9607Google Scholar
  65. 65.
    Schmitt T, Herzner G, Weckerle B, Schreier P, Strohm E (2007) Apidologie 38:164–170Google Scholar
  66. 66.
    Osbrink BJM, WLA CML, Lax AR, Vigo CB (2001) J Chromatogr A 932:119–127Google Scholar
  67. 67.
    Pasquale C, Guarino S, Peri E, Alonzo G, Colazza S (2007) Anal Bioanal Chem 389:1259–1265Google Scholar
  68. 68.
    Arsene C, Schulz S, van Loon JJA (2002) J Chem Ecol 28:2627–2631Google Scholar
  69. 69.
    Bagnères AG, Morgan ED (1990) J Chem Ecol 16:3263–3276Google Scholar
  70. 70.
    Turillazzi S, Sledge MF, Cremer S, Heinze J (2002) J Insect Soc Life 4:169–175Google Scholar
  71. 71.
    Baker JE (1978) Insect Biochem 8:287–292Google Scholar
  72. 72.
    Baker JE, Sukkestad DR, Nelson DR, Fatland CL (1979) Insect Biochem 9:603–611Google Scholar
  73. 73.
    Maliński E, Hebanowska E, Szafranek J, Nawrot J (1986) Comp Biochem Physiol 84B:211–215Google Scholar
  74. 74.
    Blomquist GJ, Chu AJ, Remaley S (1980) Insect Biochem 10:313–321Google Scholar
  75. 75.
    Nissen HP, Kreysel HW (1990) Chromatographia 30:686–690Google Scholar
  76. 76.
    Moh MH, Tang TS, Tan GH (2001) J Food Lipids 8:179–190Google Scholar
  77. 77.
    Lucena R, Cárdenas S, Valcárcel M (2007) Anal Bioanal Chem 388:1663–1672Google Scholar
  78. 78.
    Bravi E, Perretti G, Montanari L (2006) J Chromatogr A 1134:210–214Google Scholar
  79. 79.
    Christie WW, Morrison WR (1988) J Chromatogr 436:437–445Google Scholar
  80. 80.
    Homan R, Anderson MK (1998) J Chromatogr B 70:821–826Google Scholar
  81. 81.
    Silversand C, Haux C (1997) J Chromatogr B 703:7–14Google Scholar
  82. 82.
    Arnoldsson KC, Kaufmann P (1994) Chromatogr 38:317–324Google Scholar
  83. 83.
    Sas B, Peys E, Helsen M (1999) J Chromatogr A 864:179–182Google Scholar
  84. 84.
    Christie WW, Urwin RA (1995) J High Resolut Chromatogr 18:97–100Google Scholar
  85. 85.
    Grift M, Crommelin DJA, Lang J (1991) J Chromatogr 585:239–246Google Scholar
  86. 86.
    Caboni MF, Lercker G, Ghe AM (1984) J Chromatogr 315:223–231Google Scholar
  87. 87.
    Jungalwala FB, Evans JE, Mccluer RH (1976) Biochem J 155:55–60Google Scholar
  88. 88.
    Nasner A, Kraus L (1981) J Chromatogr 216:389–394Google Scholar
  89. 89.
    Clay KL, Murphy RC, Andres JL, Lynch J, Henson PM (1984) Biochem Biophys Res Commun 121:815–825Google Scholar
  90. 90.
    Patton GM, Fasulo ZM, Robins SJ (1982) J Lipid Res 23:190–196Google Scholar
  91. 91.
    Byrdwell WC (2005) Modern methods for lipid analysis by liquid chromatography/mass spectrometry and related techniques AOCS, ChampaignGoogle Scholar
  92. 92.
    Kofronová E, Cvacka J, Jiros P, Sykora D, Valterová (2009) Eur J Lipid Sci Technol 111:519–525Google Scholar
  93. 93.
    Cvacka J, Hovorka O, Jiros P, Kindl J, Stránsky K, Valterová I (2006) J Chromatogr A 1101:226–237Google Scholar
  94. 94.
    Robinson NP, MacGibbon AKH (1998) J Am Oil Chem Soc 75:993–999Google Scholar
  95. 95.
    Holcapek M, Jandera P, Zderadicka P, Hrubá L (2003) J Chromatogr A 1010:195–215Google Scholar
  96. 96.
    Lísa M, Holcapek M (2005) Chem Listy 99:195–199Google Scholar
  97. 97.
    Holcapek M, Lísa M, Jandera P, Kabátová N (2005) J Sep Sci 28:1315–1333Google Scholar
  98. 98.
    Kofronová E, Cvacka J, Vrkoslav V, Hanus R, Jiros P, Kindl J, Hovorka O, Valterová I (2009) J Chromatogr B 877:3878–3884Google Scholar
  99. 99.
    Buckner JS, Mardaus MC, Nelson DR (1996) Comp Biochem Physiol 114B:207–216Google Scholar
  100. 100.
    Nelson DR, Guershon M, Gerling D (1998) Comp Biochem Physiol 119B:655–665Google Scholar
  101. 101.
    Nelson DR, Walker GP, Buckner JS, Fatland CL (1997) Comp Biochem Physiol 117B:241–251Google Scholar
  102. 102.
    Mardaus MC, Buckner JS (1997) Insect Biochem Mol Biol 27:551–561Google Scholar
  103. 103.
    Nelson DR, Freeman TP, Buckner JS (2000) Comp Biochem Physiol 125B:265–278Google Scholar
  104. 104.
    Soliday CL, Blomquist GJ, Jackson LL (1974) J Lipid Res 15:399–405Google Scholar
  105. 105.
    Nelson DR, Lee RE Jr (2004) Comp Biochem Physiol 138B:313–320Google Scholar
  106. 106.
    Buckner JS, Nelson DR, Fatland CL, Hakk H, Pomonis JG (1984) J Biol Chem 259:8461–8470Google Scholar
  107. 107.
    Nelson DR (1993) In: Stanley-Samuelson DW, Nelson DR (eds) Insect lipids: chemistry, biochemistry, and biology. University of Nebraska Press, Lincoln, pp 271–315Google Scholar
  108. 108.
    Bernier UR, Carlson DA, Geden CJ (1998) J Am Soc Mass Spectrom 9:320–332Google Scholar
  109. 109.
    Blomquist GJ, Nelson DR, de Renobales M (1987) Arch Insect Biochem Physiol 6:227–265Google Scholar
  110. 110.
    Schulz S (2001) Lipids 36:637–647Google Scholar
  111. 111.
    Carlson DA, Bernier UR, Sutton BD (1998) J Chem Ecol 24:1845–1865Google Scholar
  112. 112.
    Nelson DR, Adams TS, Fatland CL (2003) Comp Biochem Physiol 134B:447–466Google Scholar
  113. 113.
    Evershed RP (1992) In: Hamilton RJ, Hamilton S (eds) Lipid analysis. A practical approach. Oxford University Press, Oxford, pp 263–308Google Scholar
  114. 114.
    Steel G, Henderson W (1972) Anal Chem 44:1302–1304Google Scholar
  115. 115.
    Ikekawa N, Morisaki M, Fujimoto Y (1993) Acc Chem Res 26:139–146Google Scholar
  116. 116.
    Svoboda JA, Weirich GF (1995) Lipids 30:263–267Google Scholar
  117. 117.
    Vincenti M, Guglielmetti G, Cassani G, Tonini C (1987) Anal Chem 59:694–699Google Scholar
  118. 118.
    Blomquist GJ, Howard RW, McDaniel CA, Remaley S, Dwyer LA, Nelson DR (1980) J Chem Ecol 6:257–269Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Marek Gołębiowski
    • 1
    Email author
  • Mieczysława I. Boguś
    • 2
  • Monika Paszkiewicz
    • 1
  • Piotr Stepnowski
    • 1
  1. 1.Faculty of ChemistryUniversity of GdańskGdańskPoland
  2. 2.Institute of Parasitology, Polish Academy of SciencesWarsawPoland

Personalised recommendations