Analytical and Bioanalytical Chemistry

, Volume 399, Issue 6, pp 2185–2200 | Cite as

A miniature mass analyser for in-situ elemental analysis of planetary material–performance studies

Original Paper


The performance of a laser ablation mass analyser designed for in-situ exploration of the chemical composition of planetary surfaces has been investigated. The instrument measures the elemental and isotopic composition of raw solid materials with high spatial resolution. The initial studies were performed on NIST standard materials using IR laser irradiance (< 1 GW cm−2) at which a high temporal stability of ion formation and sufficiently low sample consumption was achieved. Measurements of highly averaged spectra could be performed with typical mass resolution of mm ≈ 600 in an effective dynamic range spanning seven decades. Sensitive detection of several trace elements can be achieved at the ~ ppm level and lower. The isotopic composition is usually reproduced with 1% accuracy, implying good performance of the instrument for quantitative analysis of the isotopic fractionation effects caused by natural processes. Using the IR laser, significant elemental fractionation effects were observed for light elements and elements with a high ionization potential. Several diatomic clusters of major and minor elements could also be measured, and sometimes these interfere with the detection of trace elements at the same nominal mass. The potential of the mass analyser for application to sensitive detection of elements and their isotopes in realistic samples is exemplified by measurements of minerals. The high resolution and large dynamic range of the spectra makes detection limits of ~100 ppb possible.


The mass spectrum of Allende meteorite measured by a miniature laser ablation mass spectrometer. Similar mass spectra of planetary materials in-situ could be measured with spatial resolution of 10-100 μm (white circles) providing means for chemical analysis of planetary surfaces


Time-of-flight mass spectrometer Laser ablation Elemental analysis Meteorite composition Planetary surfaces 



This work is supported by the Swiss National Science Foundation.


  1. 1.
    Zelenyi LM, Zakharov AV, Ksanfomality LV (2009) Phys Usp 52:1056CrossRefGoogle Scholar
  2. 2.
    Wurz P, Whithby JA, Managadze GG (2009) AIP Conf Proc 144:70CrossRefGoogle Scholar
  3. 3.
    Brinckerhoff WB, Managadze GG, McEntire RW, Cheng AF, Green WJ (2000) Rev Sci Instrum 71:536CrossRefGoogle Scholar
  4. 4.
    Rohner U, Whitby JA, Wurz P (2003) Meas Sci Technol 14:2159CrossRefGoogle Scholar
  5. 5.
    Managadze GG, Shutyaev IY (1993) In: Vertes A, Gijebels R, Adams F (eds) Laser ionization mass analysis. Wiley, New YorkGoogle Scholar
  6. 6.
    Ehlmann BL (2008) Science 322:1828CrossRefGoogle Scholar
  7. 7.
    Zinner E, Göpfel C (2002) Meteorit Planet Sci 37:1001CrossRefGoogle Scholar
  8. 8.
    Allègre CJ, Manhès G, Göpel C (1995) Geochim Cosmochim Acta 59:1445CrossRefGoogle Scholar
  9. 9.
    Chela-Flores J (2010) Int J Astrobiol 9:101CrossRefGoogle Scholar
  10. 10.
    Corrigan CM, Brinckerhoff WB, Cornish T, Ecelberger S (2007) Meteor Planet Sci 42:33Google Scholar
  11. 11.
    Spencer MK, Hammond MR, Zare RN (2008) PNAS 105:18096CrossRefGoogle Scholar
  12. 12.
    Demirev PA, Fenselau C (2008) Anal Rev Anal Chem 1:71CrossRefGoogle Scholar
  13. 13.
    Sagdeev RZ, Zakharov AV (1990) Sov Astron Lett 16:125Google Scholar
  14. 14.
    Managadze GG, Wurz P, Sagdeev RZ, Chumikov AE, Tuley M, Yakovleva M, Managadze NG, Bondarenko AL (2010) Sol Syst Res 44:376CrossRefGoogle Scholar
  15. 15.
    Fenner NC, Daly NR (1966) Rev Sci Instrum 37:1068CrossRefGoogle Scholar
  16. 16.
    Bernal E, Levine LP, Ready JF (1966) Rev Sci Instrum 37:938CrossRefGoogle Scholar
  17. 17.
    Hercules DM (1988) Microchem J 38:3CrossRefGoogle Scholar
  18. 18.
    Quan Y, Chen L, Huang R, Hang W, He J, Huang B (2009) Trends Anal Chem 28:1174–1185CrossRefGoogle Scholar
  19. 19.
    Pipps CR, Dreyfus RW, Adams F (1993) In: Vertes A, Gijbels R (eds) Laser ionisation mass analysis. Wiley, New YorkGoogle Scholar
  20. 20.
    Brinckerhoff WB (2003) Acta Astronaut 52:397CrossRefGoogle Scholar
  21. 21.
    Woll DM, Wahl M, Oechsner H (1999) J Anal Chem 36:70Google Scholar
  22. 22.
    Knight AK, Scherbarth NL, Cremers DA, Ferris MJ (2000) Appl Spectrosc 54:331CrossRefGoogle Scholar
  23. 23.
    Vertes A, Gijebels R, Adams F (eds) (1993) Laser ionization mass analysis. Wiley, New YorkGoogle Scholar
  24. 24.
    Cotter RJ (1987) Anal Chim Acta 195:45CrossRefGoogle Scholar
  25. 25.
    Amoruso S, Berardi V, Bruzzese R, Spinell N, Wang X (1998) Appl Surf Sci 127–129:953CrossRefGoogle Scholar
  26. 26.
    Buchsbaum A, Rauchbauer G, Varga P, Schmid M (2008) Rev Sci Instrum 79:043301CrossRefGoogle Scholar
  27. 27.
    Dietze HJ, Becker JS (1993) In: Vertes A, Gijbels R, Adams F (eds) Laser ionisation mass analysis. Wiley, New YorkGoogle Scholar
  28. 28.
    Brinckerhoff WB (2004) Appl Phys A 79:953CrossRefGoogle Scholar
  29. 29.
    Brinckerhoff WB (2005) Planet Sp Sci 53:817CrossRefGoogle Scholar
  30. 30.
    Scherer S, Altwegg K, Balsiger H, Fischer J, Jäckel A, Korth A, Mildner M, Piazza D, Rème H, Wurz P (2010) Int J Mass Spectr 251:73CrossRefGoogle Scholar
  31. 31.
    Burakov VS, Tarasenko NV, Savasenko NA (2001) Spectrochim Acta B 56:961CrossRefGoogle Scholar
  32. 32.
    Managadze GG, Brinckerhoff WB, Chumikov AE (2003) Geophys Res Lett 30:1247CrossRefGoogle Scholar
  33. 33.
    Becker JS (2007) Inorganic mass spectrometry. Principles and applications Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  34. 34.
    Günther D, Jackson SE, Longerich HP (1999) Spectrochim Acta B 54:381CrossRefGoogle Scholar
  35. 35.
  36. 36.
    Riedo A, Wahlström P, Scheer JA, Wurz P, Tulej M (2010) J Appl Phys 108: in pressGoogle Scholar
  37. 37.
    Jarosevich E (1990) Meteoritics 25:323Google Scholar
  38. 38.
    Jarosevich E, Nelson JA, Norberg JA (1980) Geostandards News 14:43CrossRefGoogle Scholar
  39. 39.
    Heinrich CA, Pettke T, Halter WE, Aigner-Torres M, Audétat A, Günther D, Hattendorf B, Bleiner D, Guillong M, Horn I (2003) Geochim Cosmochim Acta 67:3473CrossRefGoogle Scholar
  40. 40.
    Russo RE, Mao X, Gonzalez JJ, Mao SS (2002) J Anal At Spectrom 17:1072CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Space Research and PlanetologyInstitute of PhysicsBernSwitzerland

Personalised recommendations