Online electrothermal heating of laser-generated aerosols: effects on aerosol particle size and signal intensities in ICPMS


To achieve separation of isobaric interferences and minimization of matrix related interferences for laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) electrothermal heating of laser generated aerosols was investigated by analyzing a range of solid samples: NIST SRM 610, MBH B26, BAM M381, BAM M601 and Tantalum. ICPMS measurements showed that individual elements can be removed from the laser-generated aerosol at characteristic temperatures for different solid materials. Signal reduction as high as 3 orders of magnitude were achieved for volatile elements, such as Ag and Cd when heating laser-generated aerosol of NIST SRM 610 silicate glass. A signal reduction of more than 99% was obtained for Rb while Sr remained practically unaffected. A temperature- and matrix-dependent change of particle size distribution after aerosol heating was observed by means of laser light scattering (direct aerosol visualization) and scanning electron microscopy. In the temperature range between 900 and 1,200 °C, element unspecific signal suppression was observed, which could be related to a change of the particle size distributions.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Durrant SF (1999) J Anal At Spectrom 14:1385–1403

  2. 2.

    Russo RE, Mao XL, Liu HC, Gonzalez J, Mao SS (2002) Talanta 57:425–451

  3. 3.

    Günther D, Hattendorf B (2005) TrAC Trends Anal Chem 24:255–265

  4. 4.

    Vanhaecke F, De Wannemacker G, Moens L, Van den Haute P (2001) Fresenius J Anal Chem 371:915–920

  5. 5.

    Garcia-Ruiz S, Moldovan M, Fortunato G, Wunderli S, Alonso JIG (2007) Anal Chim Acta 590:55–66

  6. 6.

    Garcia-Ruiz S, Moldovan M, Alonso JIG (2008) J Anal At Spectrom 23:84–93

  7. 7.

    Swoboda S, Brunner M, Boulyga SF, Galler P, Horacek M, Prohaska T (2008) Anal Bioanal Chem 390:487–494

  8. 8.

    Betti M (1997) J Chromatogr A 789:369–379

  9. 9.

    Kerl W, Becker JS, Dannecker W, Dietze HJ (1998) Fresenius J Anal Chem 362:433–439

  10. 10.

    Günther-Leopold I, Waldis JK, Wernli B, Kopajtic Z (2005) Int J Mass Spectrom 242:197–202

  11. 11.

    Carey JM, Evans EH, Caruso JA, Shen WL (1991) Spectrochim Acta B 46:1711–1721

  12. 12.

    Resano M, Verstraete M, Vanhaecke F, Moens L, Claessens J (2001) J Anal At Spectrom 16:793–800

  13. 13.

    Turner J, Hill SJ, Evans EH, Fairman B, Briche CSJW (2000) J Anal At Spectrom 15:743–746

  14. 14.

    Vanhaecke F, Resano M, Pruneda-Lopez M, Moens L (2002) Anal Chem 74:6040–6048

  15. 15.

    Yu LL, Kelly WR, Fassett JD, Vocke RD (2001) J Anal At Spectrom 16:140–145

  16. 16.

    Gregoire DC (1990) Anal Chem 62:141–146

  17. 17.

    Ertas G, Holcombe JA (2005) J Anal At Spectrom 20:687–695

  18. 18.

    Rowlan A, Housh TB, Holcombe JA (2008) J Anal At Spectrom 23:167–172

  19. 19.

    Grinberg P, Willie S, Sturgeon RE (2007) J Anal At Spectrom 22:1409–1414

  20. 20.

    Vaculovic T, Guillong M, Binkert J, Kanicky V, Günther D (2004) Can J Anal Sci Spectros 49:353–361

  21. 21.

    Koch J, Schlamp S, Rosgen T, Fliegel D, Günther D (2007) Spectrochim Acta B 62:20–29

  22. 22.

    Rasband WS, Image J, 2010. , U. S. National Institutes of Health, Bethesda, Maryland, USA

  23. 23.

    Kuhn HR, Koch J, Hergenröder R, Niemax K, Kalberer M, Günther D (2005) J Anal At Spectrom 20:894–900

  24. 24.

    Guillong M, Heinrich CA (2007) J Anal At Spectrom 22:1488–1494

  25. 25.

    Kosler J, Wiedenbeck M, Wirth R, Hovorka J, Sylvester P, Mikova J (2005) J Anal At Spectrom 20:402–409

  26. 26.

    Kuhn HR, Günther D (2004) J Anal At Spectrom 19:1158–1164

  27. 27.

    Kuhn HR, Günther D (2003) Anal Chem 75:747–753

  28. 28.

    Ramos FC, Wolff JA, Tollstrup DL (2004) Chem Geol 211:135–158

  29. 29.

    Jackson MG, Hart SR (2006) Earth Planet Sci Lett 245:260–277

  30. 30.

    Koch J, Wälle M, Dietiker R, Günther D (2008) Anal Chem 80:915–921

  31. 31.

    Kuhn HR, Guillong M, Günther D (2004) Anal Bioanal Chem 378:1069–1074

  32. 32.

    Arrowsmith P, Hughes SK (1988) Appl Spectrosc 42:1231–1239

  33. 33.

    Buffat Ph, Borel J-P (1976) Phys review A 13:2287–2298

  34. 34.

    Lide DR (2010) CRC handbook of chemistry and physics 88 Edition. CRC

Download references


We thank Frank Krumeich and EMEZ for the help with the SEM and ETH Zurich for financial support (ETH grant 24 08-3).

Author information

Correspondence to Detlef Günther.

Additional information

Published in the special issue Laser Ablation with Guest Editors Detlef Günther and Jan Fietzke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(AVI 53071 kb)

Video S1

(AVI 53071 kb)

(PDF .97 mb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brogioli, R., Hattendorf, B., Koch, J. et al. Online electrothermal heating of laser-generated aerosols: effects on aerosol particle size and signal intensities in ICPMS. Anal Bioanal Chem 399, 2201–2209 (2011).

Download citation


  • ETV
  • Laser ablation
  • Element separation
  • Spectral interferences
  • Particle size distribution
  • 87Rb/87Sr separation