Analytical and Bioanalytical Chemistry

, Volume 399, Issue 3, pp 1187–1200 | Cite as

Recent advances in the analysis of the site-specific isotopic fractionation of metabolites such as fatty acids using anisotropic natural-abundance 2H NMR spectroscopy: application to conjugated linolenic methyl esters

  • Philippe LesotEmail author
  • Zeinab Serhan
  • Isabelle Billault
Original Paper


The full elucidation of the enzymatic mechanisms leading to polyunsaturated ω-3 to ω-5 fatty acids (PUFAs) occurring in plants or microorganisms by analyzing their site-specific isotopic fractionation profiles is a challenging task. Isotropic SNIF-NMR® method is an historical, powerful tool for the determination of (2H/1H) ratios. However, the absence of accessible isotopic data on the enantiotopic hydrogen sites (CH2 groups) prevents the study of the enzymatic reaction stereoselectivity. Natural-abundance deuterium (NAD) 2D NMR experiment using chiral liquid crystals (CLC) as solvent is a new tool in this field, overcoming this limitation. In this work, we have explored various possibilities for optimizing the enantio-discrimination properties of CLC by changing the nature of the polypeptide and/or increasing the polarity of the organic co-solvents. We report also the first applications of TMU as co-solvent for preparing enantio-discriminating, homogenous polypeptide mesophases. The various experimental NAD NMR results recorded at an optimal sample temperature are discussed and compared in terms of number of discriminated 2H sites and magnitude of spectral separation for different PUFAs such as the linoleic and linolenic acids. The comparison of all NMR results shows that optimal results are obtained when CLC mixtures made of poly-γ-benzyl-l-glutamate (PBLG) and high polarity co-solvents are used. As new challenging examples of applications, we report the preliminary analytical results obtained from two ω-5 conjugated linolenic acids: the α-eleostearic acid (9Z, 11E, 13E) and the punicic acid (9Z, 11E, 13Z). NMR data are discussed in terms of molecular orientational ordering parameters and isotopic distribution.


The new challenges of the site-specific isotopic fractionation analysis of fatty acids using the natural-abundance deuterium NMR in polypeptide aligned media


Polyunsaturated fatty acids Site-specific isotopic fractionation 2H NMR Quadrupolar splittings PBLG Chirality Ordering behavior 



P. L. gratefully acknowledges Profs. M. Longeri and A. Loewenstein as well as Dr. P. Judeinstein for scientific discussions and/or their help during the preparation of this manuscript. The authors also thank CNRS for its financial support. Z. S. thanks the MNERS for her Ph.D granting.

Supplementary material

216_2010_4394_MOESM1_ESM.pdf (2 mb)
ESM1 (PDF 2.01 mb)


  1. 1.
    Martin GJ (1995) In: Wada E (ed) Stable isotopes in the biosphere. Kyoto University Press, Japan, pp 36–58Google Scholar
  2. 2.
    Duan J-R, Billault I, Mabon F, Robins RJ, Akoka S (2002) ChemBioChem 3:752–759CrossRefGoogle Scholar
  3. 3.
    Billault I, Guiet S, Mabon F, Robins RJ (2001) ChemBioChem 2:425–431CrossRefGoogle Scholar
  4. 4.
    Lesot P, Aroulanda C, Billault I (2004) Anal Chem 76:2827–2835CrossRefGoogle Scholar
  5. 5.
    Baillif V, Robins RJ, Billault I, Lesot P (2006) J Am Chem Soc 128:11180–11187CrossRefGoogle Scholar
  6. 6.
    Lesot P, Baillif V, Billault I (2008) Anal Chem 80:2963–2972CrossRefGoogle Scholar
  7. 7.
    Baillif V, Robins RJ, Le Feunteun, S, Lesot P, Billault I (2009) J Biol Chem 284:10783–110792CrossRefGoogle Scholar
  8. 8.
    Sarfati M, Lesot P, Merlet, D, Courtieu, J (2000) Chem Commun 2069-2081 and references thereinGoogle Scholar
  9. 9.
    Lesot P, Sarfati M, Courtieu J (2003) Chem Eur J 9:1724–1745CrossRefGoogle Scholar
  10. 10.
    Aroulanda C, Merlet D, Courtieu J, Lesot P (2001) P J Am Chem Soc 123:12059–12066CrossRefGoogle Scholar
  11. 11.
    Lafon O, Lesot P, Fan C-A, Kagan HB (2007) Chem Eur J 13:3772–3786CrossRefGoogle Scholar
  12. 12.
    Serhan Z, Martel L, Billault I, Lesot P (2010) Chem Commun 46:6599–6511CrossRefGoogle Scholar
  13. 13.
    Solgadi A, Jean L, Lasne M-C, Rouden J, Courtieu J, Meddour A (2007) Tetrahedron: Asymmetry 18:1511–1516CrossRefGoogle Scholar
  14. 14.
    Aroulanda C, Sarfati M, Courtieu J, Lesot P (2001) Enantiomer 6:281–287Google Scholar
  15. 15.
    Lesot P, Lafon O, Aroulanda C, Dong R (2008) Chem Eur J 14:4082–4092CrossRefGoogle Scholar
  16. 16.
    Harwood J (1997) In: Dey P, Harbone J (eds) Plant lipid metabolism in plant biochemistry. Academic, San Diego, pp 237–272Google Scholar
  17. 17.
    Ohlrogge J, Browse J (1995) Plant J 7:957–970Google Scholar
  18. 18.
    Scheim DE Lipids in Health and Disease, (Open access), (2009) 8:54 doi: 101186/1476-511X-8-54 from
  19. 19.
    Grossmann ME, Mizuno NK, Schuster T, Margot P (2010) Int J Oncol 36:421–426Google Scholar
  20. 20.
    Lesot P, Courtieu J (2009) Prog Nucl Magn Reson Spect 55:128–159Google Scholar
  21. 21.
    The Handbook of Chemistry, Ed. 1977Google Scholar
  22. 22.
    For TMU see: Riddick JA, Bunger WB, Sakano TK. In: Organic solvent, 4edn. Wiley Interscience NY, 1986Google Scholar
  23. 23.
    Barwick VJ (1997) Trends Anal Chem 6:293–309CrossRefGoogle Scholar
  24. 24.
    The value is calculated for a single 2H site and the sites with the maximal number of equivalent 2H. For calculation the density of all components is assumed to be equal to 1.Google Scholar
  25. 25.
    Marx A, Böttcher B, Thiele C (2010) Chem Eur J 16:1656–1663CrossRefGoogle Scholar
  26. 26.
    Kris-Etherton PM, Harris WS, Appel LJ, for the Nutrition Committee (2002) Fish consumption, fish oil, omega-3 fatty acids and cardiovascular diseases. Circulation 106:2747–2757CrossRefGoogle Scholar
  27. 27.
    Connor WE (2000) Am J Clin Nutr 71(1Suppl):171S–175SGoogle Scholar
  28. 28.
    Yasui Y, Hosokawa M, Sahara T, Suzuki R, Ohgiya S, Kohno H, Tanaka T, Miyashita K (2005) Prostaglandins Leukot Essent Fat Acids 73:113–119CrossRefGoogle Scholar
  29. 29.
    Dyer JM, Chapital DC, Kuan J-CW, Mullen RT, Turner C, McKeon TA, Pepperman AB (2002) Plant Physiol 130:2027–2038CrossRefGoogle Scholar
  30. 30.
    Liu L, Hammond EG, Nikolau BJ (1997) Plant Physiol 113:1343–1349Google Scholar
  31. 31.
    Crombie L, Holloway SJ (1985) J Chem Soc Perkin Trans 1:2425–2434CrossRefGoogle Scholar
  32. 32.
    Behrouzian B, Buist PH (2002) Curr Opin Chem Biol 6:577–582CrossRefGoogle Scholar
  33. 33.
    Reed DW, Savile CK, Qiu X, Buist PH, Covello PS (2002) Eur J Biochem 269:5024–5029CrossRefGoogle Scholar
  34. 34.
    Emsley JW, Lesot P, Courtieu J, Merlet D (2004) Phys Chem Chem Phys 6:5331–5337CrossRefGoogle Scholar
  35. 35.
    Zannoni C (1995) In: Nuclear magnetic resonance of liquid crystals. NATO ASI Series Reidel, Dordrecht, 1985, pp 1Google Scholar
  36. 36.
    Emsley JW (1995) In: Encyclopedia of nuclear magnetic resonance. Wiley, Chichester, pp 2788Google Scholar
  37. 37.
    Burnell EE, de Lange CA (2003) In: NMR of ordered liquids. Kluwer, Dordrecht, pp 5Google Scholar
  38. 38.
    Aroulanda C, Lafon O, Lesot P (2009) J Phys Chem B 113:10628–10640CrossRefGoogle Scholar
  39. 39.
    Lafon O, Lesot P, Merlet D, Courtieu J. (2004) J Magn Reson 171: 135–142Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Philippe Lesot
    • 1
    Email author
  • Zeinab Serhan
    • 1
  • Isabelle Billault
    • 2
  1. 1.Université de Paris Sud 11, CNRS UMR 8182 ICMMO, RMN en Milieu OrientéOrsay CedexFrance
  2. 2.Université de Nantes, Elucidation of Biosynthesis by Isotopic Spectrometry Group, CEISAM, UMR CNRS 6230, CNRS UMR 6230Nantes CedexFrance

Personalised recommendations