Analytical and Bioanalytical Chemistry

, Volume 399, Issue 9, pp 3081–3091 | Cite as

Application of ATR-far-infrared spectroscopy to the analysis of natural resins

  • Silvia Prati
  • Giorgia Sciutto
  • Rocco Mazzeo
  • Cristian Torri
  • Daniele Fabbri
Original Paper


This study proposes FTIR spectroscopy in the far-infrared region (FarIR) as an alternative method for the characterisation of natural resins. To this purpose, standards of natural resins belonging to four different categories (sesquiterpenic, i.e. elemi, shellac; diterpenic, i.e. colophony, Venice turpentine; diterpenic with polymerised components, i.e. copal, sandarac; triterpenic, i.e. mastic and dammar) used as paint varnishes have been analysed by FarIR spectroscopy in ATR mode. Discrimination between spectral data and repeatability of measurements have been magnified and verified using principal component analysis, in order to verify the effectiveness of the method in distinguishing the four resin categories. The same samples were analysed in the MidIR range, but the spectral differences between the different categories were not evident. Moreover, the method has been tested on historical samples from the painting “La Battaglia di Cialdiran” (sixteenth century) and from a gilded leather (seventeenth century). In the first case, FarIR spectroscopy allowed confirmation of the results obtained by analytical pyrolysis. In the latter, FarIR spectroscopy proved successfully, effective in the identification of the superficial resin layer that could not be detected with the bulk chromatographic analyses.


Cultural heritage ATR FIR spectroscopy Natural resins PCA 



Part of this research has been funded by the national project PRIN 08 “Setting up of diagnostic methodologies for the stratigraphical characterisation and spatial location of the organic components in artistic and archaeological polychrome works of art” and by the European project “CHARISMA” Cultural heritage Advanced Research Infrastructures: Synergy for a Multidisciplinary Approach to Conservation/Restoration, FP7 INFRASTRUCTURE n.228330.


  1. 1.
    Thompson DV Jr (1954) Il libro dell’arte, the craftsman’s handbook of Cennino d’Andrea Cennini. Dover, New YorkGoogle Scholar
  2. 2.
    Thomson R. (2005) In Conservation of leather and related materials, Buttherworth Heinemann, 88–91Google Scholar
  3. 3.
    Mills J, White R (1999) Organic material in museum objects, 2dth edn. Butterworth Heinemann, Oxford, pp 95–129Google Scholar
  4. 4.
    Andreotti A, Bonaduce I, Colombini MP, Gautier G, Modugno F, Ribechini E (2006) Anal Chem 78:4490–4500CrossRefGoogle Scholar
  5. 5.
    Domènech-Carbò MT, Kuckova S, de la Cruz-Canizares J, Osete-Cortina L (2006) J Chrom A 1121:248–258CrossRefGoogle Scholar
  6. 6.
    Doménech-Carbò MT (2008) Anal Chim Acta 621:109–139CrossRefGoogle Scholar
  7. 7.
    van den Berg JDJ, Boon JJ, van den Berg KJ, Fiedler I, Miller MA (1998) Anal Chem 70:1823–1830CrossRefGoogle Scholar
  8. 8.
    Chiavari G, Fabbri D, Prati S (2002) Chromatographia 55:611–616CrossRefGoogle Scholar
  9. 9.
    Shedrinsky SM, Wampler TP, Baer NS (1987) Wiene Berichte veber Naturwissenschaft in der Kunst 4:12–25Google Scholar
  10. 10.
    Osete-Cortina L, Domènech-Carbò MT (2005) J Chromatogr A 1065:265–278CrossRefGoogle Scholar
  11. 11.
    Manso M, Carvalho ML (2009) Spectr Acta B 64:482CrossRefGoogle Scholar
  12. 12.
    Casadio F, Toniolo L (2001) J Cult Heritag 2:71–78CrossRefGoogle Scholar
  13. 13.
    Messerschmidt RG, Harthcock MA (1988) Infrared microspectroscopy. Theory and applications. Marcel Dekker, New YorkGoogle Scholar
  14. 14.
    Ricci C, Miliani C, Brunetti BG, Sgamellotti A (2006) Talanta 69:1221–1226CrossRefGoogle Scholar
  15. 15.
    Bacci M (1995) Sens Actuat B 29(1–3):190–196CrossRefGoogle Scholar
  16. 16.
    Katsibiri O, Howe RF (2010) Microchem J 14–23Google Scholar
  17. 17.
    Feller RL (1954) Science 120:1069–1070CrossRefGoogle Scholar
  18. 18.
    Low MJD, Baer NS (1978) In: Conference Proceedings ICOM Committee for Conservation. 5th Triennial Meeting, Zagreb, 1–8 Oct. 1978., Paris 1978Google Scholar
  19. 19.
    Cartoni G, Russo MV, Spinelli F, Talarico F (2003) Annali di Chimica 93:849–861Google Scholar
  20. 20.
    Scalarone D, Lazzari M, Chiantore O (2003) J Anal Appl Pyrol 68–69:115–136CrossRefGoogle Scholar
  21. 21.
    Nevin A, Comelli D, Osticioli I, Toniolo T, Valentini G, Cubeddu R (2009) Anal Bioanal Chem 395:2139–2149CrossRefGoogle Scholar
  22. 22.
    Edwards HGM, David AR, Brody RH (2008) J Raman Spectr 39:966–971CrossRefGoogle Scholar
  23. 23.
    Edwards HGM, Falk MJ, Quye A (1997) J Raman Spectrosc 28:243–249CrossRefGoogle Scholar
  24. 24.
    Edwards HGM, Sibley MG, Heron C (1997) Spectrochim Acta Part A 53:2373–2382CrossRefGoogle Scholar
  25. 25.
    Edwards HGM, Farwel DW, Daffner PL (1996) Spectrochim Acta A 52:1639–1648CrossRefGoogle Scholar
  26. 26.
    Brody RH, Edwards HGM, Pollard AM (2002) Biospectr 67:129–141CrossRefGoogle Scholar
  27. 27.
    Brody RH, Edwards HGM, Pollard AM (2001) Spectrochim Acta A 57:1325–1338CrossRefGoogle Scholar
  28. 28.
    Vandenabeele P, Ortega-Aviles M, Castilleros DT, Moens L (2007) Spectrochim Acta A 68:1085–1088CrossRefGoogle Scholar
  29. 29.
    Vandenabeele P, Grimaldi DM, Edwards HGM, Moens L (2003) Spectrochim Acta A 59:2221–2229CrossRefGoogle Scholar
  30. 30.
    Vandenabeele P, Wehling B, Monees L, Edwards E, de Rev M, van Hooydonk G (2000) Anal Chim Acta 407:261–274CrossRefGoogle Scholar
  31. 31.
    Lau D, Livett M, Prawer S (2008) J Raman Spectr 39:545–552CrossRefGoogle Scholar
  32. 32.
    Karr C, Kovach JJ (1969) Appl Spectrosc 23:219–223CrossRefGoogle Scholar
  33. 33.
    Kendix E, Moscardi G, Mazzeo R, Baraldi P, Prati S, Joseph E, Capelli (2008) J Raman Spectrosc 39:1104–1112CrossRefGoogle Scholar
  34. 34.
    Kendix EL, Prati S, Joseph E, Sciutto G, Mazzeo R (2009) Anal Bioanal Chem 394:1023–1032CrossRefGoogle Scholar
  35. 35.
    Vahur S, Knuutinen U, Leito I (2009) Spectrochim Acta A 73:764–771CrossRefGoogle Scholar
  36. 36.
    Vahur S, Knuutinen U, Leito I (2010) Spectrochim Acta A 75:1061–1072CrossRefGoogle Scholar
  37. 37.
    Prati S, Joseph E, Sciutto G, Mazzeo R (2010) Acc Chem Res 43:792–801CrossRefGoogle Scholar
  38. 38.
    Barnes J, Dhanoa MS, Lister SJ (1989) App Spectrosc 43:772–777CrossRefGoogle Scholar
  39. 39.
    Torri C, Fabbri D (2009) Microchem J 93:133–139CrossRefGoogle Scholar
  40. 40.
    Mazzeo R, Joseph E, Prati S, Millemaggi A (2007) Anal Chim Acta 599:107–117CrossRefGoogle Scholar
  41. 41.
    Dutta S, Mallick M, Bertram N, Greenwood PF, Mathews RP (2009) Intern J Coal Geol 80:44–50CrossRefGoogle Scholar
  42. 42.
    Esteban M, Arino C, Diaz-Cruz JM (2006) Trends Anal Chem 25:86–92CrossRefGoogle Scholar
  43. 43.
    Harper AM, Duewer DL, Kowalski BR, Fashing JL (1977) In Kowalski BR (ed) Chemometrics: Theory and Application, ACS SymposiumGoogle Scholar
  44. 44.
    Oliveri P, Baldo MA, Daniele S, Forina M (2009) Anal Bioanal Chem 395:1135–1143CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Silvia Prati
    • 1
  • Giorgia Sciutto
    • 1
  • Rocco Mazzeo
    • 1
  • Cristian Torri
    • 2
  • Daniele Fabbri
    • 2
  1. 1.Microchemistry and Microscopy Art Diagnostic LaboratoryUniversity of BolognaRavennaItaly
  2. 2.University of Bologna, CIRSARavennaItaly

Personalised recommendations