Analytical and Bioanalytical Chemistry

, Volume 399, Issue 1, pp 519–524

Integrated microfluidic device for the separation and electrochemical detection of catechol estrogen-derived DNA adducts

  • Abdulilah Dawoud Bani-Yaseen
  • Toshikazu Kawaguchi
  • Alexander K. Price
  • Christopher T. Culbertson
  • Ryszard Jankowiak
Technical Note


Catechol estrogen-derived DNA adducts are formed as a result of the reaction of catechol estrogen metabolites (e.g., catechol estrogen quinones) with DNA to form depurinating adducts. Developing a new methodology for the detection of various DNA adducts is essential for medical diagnostics, and to this end, we demonstrate the applicability of on-chip capillary electrophoresis with an integrated electrochemical system for the separation and amperometric detection of various catechol estrogen-derived DNA adducts. A hybrid PDMS/glass microchip with in-channel amperometric detection interfaced with in situ palladium decoupler is utilized and presented. The influence of buffer additives along with the effect of the separation voltage on the resolving power of the microchip is discussed. Calibration plots were constructed in the range 0.4–10 μM with r2 ≥ 0.999, and detection limits in the attomole range are reported. These results suggest that on-chip analysis is applicable for analyzing various DNA adducts as potential biomarkers for future medical diagnostics.


Microfluidic device Catechol estrogens Amperometric detection DNA adduct Separation Integration 


  1. 1.
    Cavalieri EL, Rogan EG, Chakravarti D (2002) Cell Mol Life Sci 59:665–681CrossRefGoogle Scholar
  2. 2.
    Chakravarti D, Mailander PC, Li KM, Higginbotham S, Zhang HL, Gross M, Meza JL, Cavalieri EL, Rogan EG (2001) Oncogene 20:7945–7953CrossRefGoogle Scholar
  3. 3.
    Dwivedy I, Devanesan PD, Cremonesi P, Rogan EG, Cavalieri EL (1992) Chem Res Toxicol 5:828–833CrossRefGoogle Scholar
  4. 4.
    International Agency for Research on Cancer Group (1979), IARC Monographs on Evaluation of Carcinogenic Risk of Chemicals to Humans, International Agency for Research on Cancer, Lyon, France; Sex Hormones (II), vol. 21. pp. 173–221Google Scholar
  5. 5.
    Liehr JG (2001) Endocr Rev 21:4054–4058Google Scholar
  6. 6.
    Cavalieri E, Kohli E, Zahid M, Rogan EG (2003) Proc Am Assoc Cancer Res 44:180, 2nd editionGoogle Scholar
  7. 7.
    Guengerich FP (1989) Annu Rev Pharmacol Toxicol 29:241–264CrossRefGoogle Scholar
  8. 8.
    Martucci CP (1993) J Fishman Pharmacol Ther 57:237–257CrossRefGoogle Scholar
  9. 9.
    Zhu BT, Conney AH (1998) Carcinogenesis 19:1–27CrossRefGoogle Scholar
  10. 10.
    Kalyanaraman B, Sealy RC, Sivarajah K (1984) J Biol Chem 259:14018–14022Google Scholar
  11. 11.
    Liehr JG, Ulubelen AA, Strobel HW (1986) J Biol Chem 261:16865–16870Google Scholar
  12. 12.
    Roy D, Liehr JG (1999) Mutat Res 424:107Google Scholar
  13. 13.
    Cavalieri EL, Stack DE, Devanesan PD, Todorovic R, Dwivedy I, Higginbotham S, Johanson S, Patil K, Rogan E (1997) Proc Natl Acad Sci 94:10937–10942CrossRefGoogle Scholar
  14. 14.
    Li K-M, Devanesan PD, Rogan EG, Cavalieri EL (1998) Proc Am Assoc Cancer Res 39:636–643Google Scholar
  15. 15.
    Stack D, Byun J, Gross ML, Rogan EG, Cavalieri E (1996) Chem Res Toxicol 9:851–859CrossRefGoogle Scholar
  16. 16.
    Jankowiak R, Zamzow D, Stack DE, Cavalieri EL, Small GJ (1998) Chem Res Toxicol 11:1339–1345CrossRefGoogle Scholar
  17. 17.
    Cavalieri EL, Kumar S, Todorovic R, Higginbotham S, Badawi AF, Rogan EG (2002) Chem Res Toxicol 14:1041–1050CrossRefGoogle Scholar
  18. 18.
    Cao K, Devanesan PD, Ramanathan R, Gross ML, Rogan E, Cavalieri EL (1998) Chem Res Toxicol 11:917–924CrossRefGoogle Scholar
  19. 19.
    Todorovic R, Devanesan P, Higginbotham S, Zhao J, Gross ML, Rogan EG, Cavalieri EL (2001) Carcinogenesis 22:905–911CrossRefGoogle Scholar
  20. 20.
    Devanesan Z, Todorovic R, Zhao J, Gross ML, Rogan EG, Cavalieri EL (2001) Carcinogenesis 22:489–497CrossRefGoogle Scholar
  21. 21.
    Manz A, Grabner N, Widmer HM (1990) Sens Actuators B 1:244–248CrossRefGoogle Scholar
  22. 22.
    Manz A, Harrison DJ, Rettinger JC, Verpoorte E, Ludi H, Widmer HM (1990) Transducers 91, Digest of Technical Papers, IEEE 91 CH2817. IEEE, New York, pp 939–941Google Scholar
  23. 23.
    Harrison DJ, Manz A, Glavina PJ (1990) Transducers 91, Digest of Technical Papers, IEEE 91-CH2817-5. IEEE, New York, pp 792–795Google Scholar
  24. 24.
    Bruin GJ (2000) Electrophoresis 21:3931–3951CrossRefGoogle Scholar
  25. 25.
    de Mello A (2002) Lab Chip 2:48N–54NCrossRefGoogle Scholar
  26. 26.
    Vandaveer WR, Pasas-Farmer SA, Fischer DJ, Frankenfeld CN, Lunte SM (2004) Electrophoresis 25:3528–3549CrossRefGoogle Scholar
  27. 27.
    Fang T, Ramalingam N, Xian-Dui D, Ngin TS, Xianting Z, Kuan A, Huat E, Hai-Qing G (2009) Biosens Bioelectron 24:2131–2136CrossRefGoogle Scholar
  28. 28.
    Ge R, Allen RWK, Aldous L, Bown MR, Doy N, Hardacre C, MacInnes JM, McHale G, Newton MI (2009) Anal Chem 81:1628–1637CrossRefGoogle Scholar
  29. 29.
    Hulvey M, Martin R (2009) Anal Bioanal Chem 393:599–605CrossRefGoogle Scholar
  30. 30.
    Dawoud AA, Kawaguchi T, Markushin Y, Porter MD, Jankowiak R (2006) Sens Actuators B Chem 120:42–50CrossRefGoogle Scholar
  31. 31.
    Dawoud AA, Kawaguchi T, Jankowiak R (2007) Anal Bioanal Chem 388:245–252CrossRefGoogle Scholar
  32. 32.
    Dawoud AA, Kawaguchi T, Jankowiak R (2009) Int J Nanomanufacturing 4:99–107CrossRefGoogle Scholar
  33. 33.
    Dawoud Bani-Yaseen A (2009) IEEE Sensors 9:81–86CrossRefGoogle Scholar
  34. 34.
    Markushin Y, Kapke P, Saeed M, Zhang H, Dawoud AA, Rogan EG, Cavalieri EL, Jankowiak R (2005) Chem Res Toxicol 18:1520–1527CrossRefGoogle Scholar
  35. 35.
    Manica DP, Mitsumori Y, Ewing AG (2003) Anal Chem 75:4572–4577CrossRefGoogle Scholar
  36. 36.
    Collier A, Wang J, Diamond D, Dempsey E (2005) Anal Chim Acta 550:107–115CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Abdulilah Dawoud Bani-Yaseen
    • 1
    • 2
  • Toshikazu Kawaguchi
    • 3
  • Alexander K. Price
    • 1
  • Christopher T. Culbertson
    • 1
  • Ryszard Jankowiak
    • 1
  1. 1.Department of ChemistryKansas State UniversityManhattanUSA
  2. 2.Department of ChemistryTaibah UniversityAl-Madinah Al-MunawarahSaudi Arabia
  3. 3.Arts, Science, and Technology Center for Cooperative ResearchKyushu UniversityKasugaJapan

Personalised recommendations