Analytical and Bioanalytical Chemistry

, Volume 399, Issue 6, pp 2031–2041 | Cite as

Assessment of the sequential principal component analysis chemometric tool to identify the soluble atmospheric pollutants in rainwater

  • Rocío Montoya-Mayor
  • Antonio José Fernández-Espinosa
  • Miguel Ternero-Rodríguez
Original Paper


In this study a new method of principal component (PC) analysis, sequential PC analysis (SPCA), is proposed and assessed on real samples. The aim was to identify the atmospheric emission sources of soluble compounds in rainwater samples, and the sample collection was performed with an automatic sampler. Anions and cations were separated and quantified by ion chromatography, whereas trace metals and metalloids were determined by inductively coupled plasma mass spectrometry. SPCA results showed eight interfering PCs and ten significant PCs. The interfering cases originated from different atmospheric sources, such as resuspended crustal particles, marine aerosols, urban traffic and a fertilizer factory. The significant PCs explained 84.6% of the total variance; 28.1% accounted for the main contribution, which was resuspended industrial soil from a fertilizer factory containing NO 2 - , NH 4 + , NO 3 - , SO 4 2- , F-, Al, K+, Mn, Sb and Ca2+ as indicators of the fertilizer factory. Another important source (15.0%) was found for Na+, Mg2+, K+, Cl- and SO 4 2- , which represents the marine influence from south and southwest directions. Emissions of Ba2+, Pb, Sr2+, Sb and Mo, which represent a traffic source deposited in soils, were identified as another abundant contribution (12.1%) to the rainwater composition. Other important contributions to the rainwater samples that were identified through SPCA included the following: different urban emissions (Cu, As, Cd, Zn, Mo and Co, 18.1%), emissions from vegetation (HCOO-, 7.7%) and emissions from industrial combustion processes (Ni, V 15.6%). The application of SPCA proved to be a useful tool to identify the complete information on rainwater samples as indicators of urban air pollution in a city influenced mainly by vehicle traffic emissions and resuspended polluted soils.


Rainwater Principal component analysis Trace metals Bioavailability Sources identification Traffic pollution 



The authors would like to thank the Junta de Andalucía for its financial assistance in carrying out this research project (P05, RNM, 1177) and for the generous grant provided to the first author.


  1. 1.
    Eriksson E (1952) Tellus 4:215–232CrossRefGoogle Scholar
  2. 2.
    Eriksson E (1952) Tellus 4:280–303CrossRefGoogle Scholar
  3. 3.
    Vázquez A, Costoya M, Peña RM, García S, Herrero C (2003) Chemosphere 51:375–386CrossRefGoogle Scholar
  4. 4.
    Weathers KC, Lovett GM, Likens GE (1995) Atmos Environ 29:665–672CrossRefGoogle Scholar
  5. 5.
    Shih-Chieh Hsu, George T.F. Wong, Gwo-Ching Gong (2010) Mar Chem 120:116–127Google Scholar
  6. 6.
    Báez A, Belmont R, García R, Padilla H, Torres MC (2007) Atmos Res 86:61–75CrossRefGoogle Scholar
  7. 7.
    Arsene C, Olariu RJ, Mihalopoulos N (2007) Atmos Environ 41:9452–9467CrossRefGoogle Scholar
  8. 8.
    Celle-Jeanton H, Travi Y, Loÿe-Pilot MD, Huneau F, Bertrand G (2009) Atmos Res 91:118–126CrossRefGoogle Scholar
  9. 9.
    Wei Hong, Wang Jian-li, Li Xu-guang (2005) Xinan Shifan Daxue Xuebao, Ziran Kexueban 30:725–729Google Scholar
  10. 10.
    Momin GA, Ali K, Rao PSP, Safai PD, Chate DM, Praveen PS, Rodhe H, Granat L (2005) J Geophys Res Atmos 110:D08302/1–D08302/10Google Scholar
  11. 11.
    Alastuey A, Querol X, Chaves A (1999) Ruiz, Carratala A, Lopez, Soler A. Environ Pollut 106:359–367CrossRefGoogle Scholar
  12. 12.
    Hontoria C, Saa A, Almorox J, Cuadra L, Sánchez A, Gasco JM (2003) Water Air Soil Pollut 146:35–54CrossRefGoogle Scholar
  13. 13.
    Morselli L, Olivieri P, Brusori B, Passarini F (2003) Environ Pollut 124:457–469CrossRefGoogle Scholar
  14. 14.
    González JM, Benítez J, Cape N, Mathew R (2009) Atmos Environ 43:4087–4094CrossRefGoogle Scholar
  15. 15.
    Demirak A (2007) Environ Monit Assess 129:189–196CrossRefGoogle Scholar
  16. 16.
    Alastuey A, Querol X, Chaves A (1999) Environ Pollut 106:359–367CrossRefGoogle Scholar
  17. 17.
    Zheng Yan-ming, Zhong Wei, Peng Xiao-ying (2009) Huanan Shifan Daxue Xuebao, Ziran Kexueban 1:111–115Google Scholar
  18. 18.
    Flues M (2002) Atmos Environ 36:2397–2404CrossRefGoogle Scholar
  19. 19.
    Pelicho AF, Martins LD, Nomi SN, Solci MC (2006) Atmos Environ 40:6827–6835CrossRefGoogle Scholar
  20. 20.
    Uygur N, Karaca F, Alagha O (2010) Atmos Res 95:55–64CrossRefGoogle Scholar
  21. 21.
    Williams PT, Radojevic M, Clarke AG (1988) Atmos Environ 22:1433–1442CrossRefGoogle Scholar
  22. 22.
    Spanos T, Simeonov V, Andreev G (2002) Talanta 58:367–375CrossRefGoogle Scholar
  23. 23.
    Nicolás JF, Yubero E, Pastor C, Crespo J, Carratalá A (2009) Atmos Res 94:330–337CrossRefGoogle Scholar
  24. 24.
    Gimenez J, Pastor C, Castaner R, Nicolas J, Crespo J, Carratala A (2010) Atmos Environ 44:338–346CrossRefGoogle Scholar
  25. 25.
    Gonzalez E, Villasenor R, Gasca J, Lopez T, Mugica V (2002) In: Proceedings of the Air & Waste Management Association's annual conference & exhibition, 95th. Baltimore, MD, United States, June 23:27Google Scholar
  26. 26.
    Melgarejo PL, Ternero M, Gracia I (1986) Int J Environ Anal Chem 24:283–295CrossRefGoogle Scholar
  27. 27.
    Despiau S, Cougnenc S, Resch F (1996) J Aerosol Sci 27:403–415CrossRefGoogle Scholar
  28. 28.
    Vakeva M, Hameri K, Puhakka T, Nilsson ED, Hohti H, Makela JM (2000) J Geophys Res Atmos 105:9807–9821CrossRefGoogle Scholar
  29. 29.
    Fernández AJ, Ternero M (2004) Idojaras 108:11–32Google Scholar
  30. 30.
    Zhang P, Dudley N, Ure AM, Littlejohn D (1992) Anal Chim Acta 258:1–10CrossRefGoogle Scholar
  31. 31.
    Samara C, Kouimtzis T, Katsoulos GA (1994) Toxicol Environ Chem 44:147–160CrossRefGoogle Scholar
  32. 32.
    Vanderginste B, Massart DL, Buydens L, De Jong S, Lewi P, Verbeke JS (1998) Handbook of chemometrics and qualimetrics. Elsevier, AmsterdamGoogle Scholar
  33. 33.
    Fernández AJ, Ternero M, Fernández F (2004) Atmos Environ 38:873–886CrossRefGoogle Scholar
  34. 34.
    Polkowska Z, Astel A, Walna B, Malek S, Medrzycka K, Gorecki T, Siepak J, Namiesnik J (2005) Atmos Environ 39:837–855CrossRefGoogle Scholar
  35. 35.
    Prendes P, Andrade JM, Lopez-Mahia P, Prada D (1999) Talanta 49:165–178CrossRefGoogle Scholar
  36. 36.
    Bouza Deaño R, Ternero Rodríguez M, Fernández Espinosa AJ (2008) J Hydrol 361:227–239CrossRefGoogle Scholar
  37. 37.
    US Environmental Protection Agency (1994) Method 200.8. Determination of trace elements in waters and wastes by inductively coupled plasma-mass spectrometry. Environmental Monitoring Systems Laboratory. Office of Research and Development. Cincinnati, Ohio, USAGoogle Scholar
  38. 38.
    Association of Analytical Communities (2010) Guidelines for single laboratory validation of chemical methods for dietary supplements and botanicals. AOAC INTERNATIONAL. Gaithersburg, Maryland, USAGoogle Scholar
  39. 39.
    Panyakapo M, Onchang R (2008) J Environ Sci (Beijing, China) 20:441–448Google Scholar
  40. 40.
    Cerón RMB, Padilla HG, Belmont RD, Torres MCB, García RM, Báez AP (2002) Atmos Environ 36:2367–2374CrossRefGoogle Scholar
  41. 41.
    Patriarca M, Menditto A, Rossi B, Lyon TDB, Fell GS (2000) Microchem J 67:351–361CrossRefGoogle Scholar
  42. 42.
    Al Momani IF (2003) Atmos Environ 37:4507–4515CrossRefGoogle Scholar
  43. 43.
    Halstead MJR, Cunninghame RG, Hunter KA (2000) Atmos Environ 34:665–676CrossRefGoogle Scholar
  44. 44.
    Fernández AJ, Ternero M (2004) Anal Bioanal Chem 379:684–699CrossRefGoogle Scholar
  45. 45.
    Fernández AJ, Ternero M, Barragán FJ, Jiménez JC (2000) Chemosphere Glob Change Sci 2:123–136CrossRefGoogle Scholar
  46. 46.
    Peña RM, García S, Herrero C (2002) Atmos Environ 36:5277–5288CrossRefGoogle Scholar
  47. 47.
    Brooks A, Kieber RJ, Witt M, Willey JD (2006) Atmos Environ 40:1683–1693CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Rocío Montoya-Mayor
    • 1
  • Antonio José Fernández-Espinosa
    • 1
  • Miguel Ternero-Rodríguez
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of ChemistryUniversity of SevilleSevilleSpain

Personalised recommendations