Analytical and Bioanalytical Chemistry

, Volume 399, Issue 1, pp 367–376 | Cite as

Enhanced detection of olefins using ambient ionization mass spectrometry: Ag+ adducts of biologically relevant alkenes

  • Ayanna U. Jackson
  • Thomas Shum
  • Ewa Sokol
  • Allison Dill
  • R. Graham Cooks
Original Paper

Abstract

Spray solvent doped with silver ions increases the ease of olefin detection by desorption electrospray ionization (DESI). Characteristic silver adducts were generated in up to 50 times greater abundance when compared to conventional DESI spray solvents for the biologically significant olefin, arachidonic acid, in the positive ion mode. In the analysis of 26 lipids, silver adduct formation was highly favorable for fatty acids, fatty acid esters and prostaglandins but not applicable to some other classes (e.g., polar lipids such as ceramide and its derivative cerebroside sulfate). An investigation exploring competitive Ag+ cationization with a mixture of components demonstrated that polyunsaturated compounds form Ag+ adducts most readily. Silver cationization allowed the distinction between three sets of isomers in the course of multiple-stage collision-induced dissociation, so providing insight into the location of the olefin bonds. A silver ion-doped solvent was used in DESI imaging of normal and tumor canine bladder tissue sections. The Ag+ fatty acid adducts permitted post facto differentiation between the normal and tumor regions. In addition, silver adduct formation in the course of DESI imaging of tissue sections revealed the presence of triacylglycerides, a class of compounds not previously identified through DESI imaging. A simple silver nitrate spray solvent has the potential to further improve DESI analysis of unsaturated biomolecules and other molecules containing π-bonds through selective silver cationization.

Figure

Schematic of the experimental setup for the desorption electrospray ionization (DESI) mass spectrometry analysis. Spray solvent doped with silver ions increases the ease of olefin detection by DESI.

Keywords

Fatty acid Fatty acid ethyl ester Tissue imaging Arachidonic acid Oleic acid Prostaglandin E1 Lipids Glycerides Mass spectrometry imaging 

Supplementary material

216_2010_4349_MOESM1_ESM.pdf (62 kb)
Table S1Lipid compounds evaluated (PDF 62 kb)

References

  1. 1.
    Watson AD (2006) Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res 47:2101–2111CrossRefGoogle Scholar
  2. 2.
    Leung CL, Pang Y, Shu C, Goryunov D, Liem RKH (2007) Alterations in lipid metabolism gene expression and abnormal lipid accumulation in fibroblast explants from giant axonal neuropathy patients. BMC Genet 8:1–12CrossRefGoogle Scholar
  3. 3.
    Byrdwell WC (2010) Dual parallel mass spectrometry for lipid and vitamin D analysis. J Chromatogr A 1217:3992–4003CrossRefGoogle Scholar
  4. 4.
    Han X (2010) Multi-dimensional mass spectrometry-based shotgun lipidomics and the altered lipids at the mild cognitive impairment stage of Alzheimer’s disease. Biochim Biophys Acta 1801:774–783Google Scholar
  5. 5.
    Shevchenko A, Simons K (2010) Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol 11:593–598CrossRefGoogle Scholar
  6. 6.
    Chen HW, Gamez G, Zenobi R (2009) What can we learn from ambient ionization techniques? J Am Soc Mass Spectrom 20:1947–1963CrossRefGoogle Scholar
  7. 7.
    Van-Berkel GJ, Pasilis SP, Ovchinnikova O (2008) Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry. J Mass Spectrom 47:1161–1180CrossRefGoogle Scholar
  8. 8.
    Venter A, Nefliu M, Cooks RG (2008) Ambient desorption ionization mass spectrometry. Trends Anal Chem 27:284–290CrossRefGoogle Scholar
  9. 9.
    Cooks RG, Ouyang Z, Takats Z, Wiseman JM (2006) Ambient mass spectrometry. Science 311:1566–1570CrossRefGoogle Scholar
  10. 10.
    Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473CrossRefGoogle Scholar
  11. 11.
    Fordham PJ, Chamot-Rooke J, Giudice E, Tortajada J, Morizur JP (1999) Analysis of alkenes by copper ion chemical ionization gas chromatography/mass spectrometry and gas chromatography/tandem mass spectrometry. J Mass Spectrom 34:1007–1017CrossRefGoogle Scholar
  12. 12.
    Lequere JL, Sebedio JL, Henry R, Couderc F, Demont N, Prome JC (1991) Gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry of cyclic fatty acid monomers isolated from heated fats. J Chromatogr Biomed Appl 562:659–672CrossRefGoogle Scholar
  13. 13.
    Peake DA, Huang SK, Gross ML (1987) Iron(I) chemical ionization for analysis of alkene and alkyne mixtures by tandem sector mass spectrometry or gas chromatography/Fourier transform mass spectrometry. Anal Chem 59:1557–1563CrossRefGoogle Scholar
  14. 14.
    Bell SE, Ewing RG, Eiceman GA, Karpas Z (1994) Atmospheric pressure chemical ionization of alkanes, alkenes, and cycloalkanes. J Am Soc Mass Spectrom 5:177–185CrossRefGoogle Scholar
  15. 15.
    Le Quere JL, Semon E, Lanher B, Sebedio JL (1989) On-line hydrogenation in GC-MS analysis of cyclic fatty acid monomers isolated from heated linseed oil. Lipids 24:347–350CrossRefGoogle Scholar
  16. 16.
    Eiceman GA, Fuavao VA, Doolittle KD, Herman CA (1982) Determination of prostaglandin precursors in frog tissue using selected-ion monitoring in gas-chromatographic mass spectromic analysis. J Chromatogr 236:97–104CrossRefGoogle Scholar
  17. 17.
    Le Grandois J, Marchioni E, Zhao M, Giuffrida F, Ennahar S, Bindler F (2009) Investigation of natural phosphatidylcholine sources: separation and identification by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS2) of molecular species. J Agr Food Chem 57:6014–6020CrossRefGoogle Scholar
  18. 18.
    Yin H, Porter NA (2007) Identification of intact lipid peroxides by Ag+ coordination ion-spray mass spectrometry (CIS-MS). Methods Enzymol 433:193–211CrossRefGoogle Scholar
  19. 19.
    Nomiya K, Kondoh Y, Nagano H, Oda M (1995) Characterization by electrospray ionization (ESI) mass spectrometry of an oligomeric, anionic thiomalato-silver(I) complex showing biological activity. J Chem Soc Chem Commun 1679–1680Google Scholar
  20. 20.
    Choi SS, Ha SH (2007) Influence of silver salt types on formation of silver cluster ions in MALDI with DHB as matrix, kor. Chem Soc 28:2508–2510Google Scholar
  21. 21.
    Choi SS, Ha SH (2008) Influence of sample preparation method and silver salt types on MALDI-TOFMS analysis of polybutadiene. Macromol Res 16:108–112Google Scholar
  22. 22.
    Grade H, Winograd N, Cooks RG (1977) Cationization of organic molecules in secondary ion mass spectrometry. J Am Chem Soc 99:7725–7726CrossRefGoogle Scholar
  23. 23.
    Nikolova-Damyanova B (2009) Retention of lipids in silver ion high-performance liquid chromatography: facts and assumptions. J Chromatogr A 1216:1815–1824CrossRefGoogle Scholar
  24. 24.
    Hand OW, Winger BE, Cooks RG (1989) Enhanced silver cationization of polycyclic aromatic hydrocarbons containing bay regions in molecular secondary ion mass spectrometry. Biomed Environ Mass Spectrom 18:83–85CrossRefGoogle Scholar
  25. 25.
    Ng KM, Ma NL, Tsang CW (1998) Cation-aromatic π interaction in the gas phase: an experimental study on relative silver (I) ion affinities of polyaromatic hydrocarbons. Rapid Commun Mass Spectrom 12:1679–1684CrossRefGoogle Scholar
  26. 26.
    Momchilova S, Nikolova-Damyanova B (2003) Stationary phases for silver ion chromatography of lipids: preparation and properties. J Sep Sci 26:261–270CrossRefGoogle Scholar
  27. 27.
    Nikolova-Damyanova B, Momchilova S (2002) Silver ion HPLC for the analysis of positionally isomeric fatty acids. J Liq Chromatogr Relat Technol 25:1947–1965CrossRefGoogle Scholar
  28. 28.
    Muddiman DC, Brockman AH, Proctor A, Houalla M, Hercules DM (1994) Characterization of polystyrene on etched silver using ion-scattering and X-ray photoelectron-spectroscopy—correlation of secondary-ion yield in time-of-flight SIMS with surface coverage. J Phys Chem 98:11570–11575CrossRefGoogle Scholar
  29. 29.
    Nicola AJ, Muddiman DC, Hercules DM (1996) Enhancement of ion intensity in time-of-flight secondary-ionization mass spectrometry. J Am Soc Mass Spectrom 7:467–472CrossRefGoogle Scholar
  30. 30.
    Bereman MS, Muddiman DC (2007) Detection of attomole amounts of analyte by desorption electrospray ionization mass spectrometry (DESI-MS) determined using fluorescence spectroscopy. J Am Soc Mass Spectrom 18:1093–1096CrossRefGoogle Scholar
  31. 31.
    Garcia-Reyes JF, Jackson AU, Molina-Diaz A, Cooks RG (2009) Desorption electrospray ionization mass spectrometry for trace analysis of agrochemicals in food. Anal Chem 81:820–829CrossRefGoogle Scholar
  32. 32.
    Manicke NE, Kistler T, Ifa DR, Cooks RG, Ouyang Z (2009) High-throughput quantitative analysis by desorption electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 20:321–325CrossRefGoogle Scholar
  33. 33.
    Wiseman JM, Ifa DR, Zhu Z, Kissnger CB, Manicke NE, Kissinger PT, Cooks RG (2008) Ambient molecular imaging by desorption electrospray ionization mass spectrometry. Nat Protoc 3:517–524CrossRefGoogle Scholar
  34. 34.
    Kennedy JH, Wiseman JM (2010) Direct analysis of salvia divinorum leaves for salvinorin a by thin layer chromatography and desorption electrospray ionization multi-stage tandem mass spectrometry. Rapid Commun Mass Spectrom 24:1305–1311CrossRefGoogle Scholar
  35. 35.
    Nyadong L, Late S, Green MD, Banga A, Fernandez FM (2008) Direct quantitation of active ingredients in solid artesunate antimalarials by noncovalent complex forming reactive desorption electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 19:380–388CrossRefGoogle Scholar
  36. 36.
    Costa AB, Cooks RG (2007) Simulation of atmospheric transport and droplet—thin film collisions in desorption electrospray ionization. Chem Commun 38:3915–3917CrossRefGoogle Scholar
  37. 37.
    Costa AB, Cooks RG (2008) Simulated splashes: elucidating the mechanism of desorption electrospray ionization mass spectrometry. Chem Phys Lett 464:1–8CrossRefGoogle Scholar
  38. 38.
    Venter A, Sojka PE, Cooks RG (2006) Droplet dynamics and ionization mechanisms in desorption electrospray ionization mass spectrometry. Anal Chem 78:8549–8555CrossRefGoogle Scholar
  39. 39.
    Cotte-Rodriguez I, Cooks RG (2006) Non-proximate detection of explosives and chemical warfare agent simulants by desorption electrospray ionization mass spectrometry. Chem Commun 28:2968–2970CrossRefGoogle Scholar
  40. 40.
    Ifa DR, Wiseman JM, Song QY, Cooks RG (2007) Development of capabilities for imaging mass spectrometry under ambient conditions with desorption electrospray ionization (DESI). Int J Mass Spectrom 259:8–15CrossRefGoogle Scholar
  41. 41.
    Wu C, Ifa DR, Manicke NE, Cooks RG (2010) Molecular imaging of adrenal gland by desorption electrospray ionization mass spectrometry. Analyst 135:28–32CrossRefGoogle Scholar
  42. 42.
    Wu C, Qian K, Nefliu M, Cooks RG (2010) Ambient analysis of saturated hydrocarbons using discharge-induced oxidation in desorption electrospray ionization. J Am Soc Mass Spectrom 21:261–267CrossRefGoogle Scholar
  43. 43.
    Nyadong L, Green MD, De Jesus VR, Newton PN, Fernandez FM (2007) Reactive desorption electrospray ionization linear ion trap mass spectrometry of latest-generation counterfeit antimalarials via noncovalent complex formation. Anal Chem 79:2150–2157CrossRefGoogle Scholar
  44. 44.
    Venter A, Cooks RG (2007) Desorption electrospray ionization in a small pressure-tight enclosure. Anal Chem 79:6398–6403CrossRefGoogle Scholar
  45. 45.
    Dill AL, Ifa DR, Manicke NE, Costa AB, Ramos-Vara JA, Knapp DW, Cooks RG (2009) Lipid profiles of canine invasive transitional cell carcinoma of the urinary bladder and adjacent normal tissue by desorption electrospray ionization imaging mass spectrometry. Anal Chem 81:8758–8764CrossRefGoogle Scholar
  46. 46.
    Takats Z, Wiseman JM, Gologan B, Cooks RG (2005) Electrosonic spray ionization. a gentle technique for generating folded proteins and protein complexes in the gas phase and for studying ion-molecule reactions at atmospheric pressure. Anal Chem 76:4050–4058CrossRefGoogle Scholar
  47. 47.
    Devle H, Rukke EO, Naess-Andresen CF, Ekeberg D (2009) A GC–magnetic sector MS method for identification and quantification of fatty acids in ewe milk by different acquisition modes. J Sep Sci 32:3738–3745CrossRefGoogle Scholar
  48. 48.
    Ingram JC, Bauer WF, Lehman RM, O’Connell SP, Shaw AD (2003) Detection of fatty acids from intact microorganisms by molecular beam static secondary ion mass spectrometry. J Microbiol Methods 53:295–307CrossRefGoogle Scholar
  49. 49.
    Kurata S, Yamaguchi K, Nagai M (2005) Rapid discrimination of fatty acid composition in fats and oils by electrospray ionization mass spectrometry. Anal Sci 21:1457–1465CrossRefGoogle Scholar
  50. 50.
    Chu XP, Zhao T, Zhang YY, Zhao AH, Zhou MM, Zheng XJ, Dan M, Jia W (2009) Determination of 13 free fatty acids in pheretima using ultra-performance LC-ESI-MS. Chromatographia 69:645–652CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ayanna U. Jackson
    • 1
    • 2
  • Thomas Shum
    • 1
    • 2
  • Ewa Sokol
    • 1
    • 2
  • Allison Dill
    • 1
    • 2
  • R. Graham Cooks
    • 1
    • 2
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA
  2. 2.Bindley Bioscience Center, Discovery ParkPurdue UniversityWest LafayetteUSA

Personalised recommendations