Advertisement

Analytical and Bioanalytical Chemistry

, Volume 399, Issue 2, pp 839–850 | Cite as

Simultaneous quantitative profiling of N-acyl-l-homoserine lactone and 2-alkyl-4(1H)-quinolone families of quorum-sensing signaling molecules using LC-MS/MS

  • Catharine A. Ortori
  • Jean-Frédéric Dubern
  • Siri Ram Chhabra
  • Miguel Cámara
  • Kim Hardie
  • Paul Williams
  • David A. BarrettEmail author
Original Paper

Abstract

An LC-MS/MS method, using positive mode electrospray ionization, for the simultaneous, quantitative and targeted profiling of the N-acyl-l-homoserine lactone (AHL) and 2-alkyl 4-(1H)-quinolone (AQ) families of bacterial quorum-sensing signaling molecules (QSSMs) is presented. This LC-MS/MS technique was applied to determine the relative molar ratios of AHLs and AQs produced by Pseudomonas aeruginosa and the consequences of mutating individual or multiple QSSM synthase genes (lasI, rhlI, pqsA) on AHL and AQ profiles and concentrations. The AHL profile of P. aeruginosa was dominated by N-butanoyl-l-homoserine lactone (C4-HSL) with lesser concentrations of N-hexanoyl-l-homoserine lactone (C6-HSL) and 3-oxo-substituted longer chain AHLs including N-(3-oxodecanoyl)-l-homoserine lactone (3-oxo-C10-HSL) and N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL). The AQ profile of P. aeruginosa comprised the C7 and C9 long alkyl chain AQs including 2-heptyl-4-hydroxyquinoline (HHQ), 2-nonyl-4-hydroxyquinoline, the “pseudomonas quinolone signal” (2-heptyl-3-hydroxy-4-quinolone) and the N-oxides, 2-heptyl-4-hydroxyquinoline N-oxide and 2-nonyl-4-hydroxyquinoline N-oxide. Application of the method showed significant effects of growth medium type on the ratio and the nature of the QSSMs synthesized and the dramatic effect of single, double and triple mutations in the P. aeruginosa QS synthase genes. The LC-MS/MS methodology is applicable in organisms where either or both AHL and AQ QSSMs are produced and can provide comprehensive profiles and concentrations from a single sample.

Keywords

Bioanalytical methods Mass spectrometry HPLC Pseudomonas aeruginosa N-acyl-l-homoserine lactones 2-alkyl-4-(1H)-quinolones 

Notes

Acknowledgments

We thank Alex Truman for the synthesis of AHLs and AQs and Christian Pustelny for making the site-directed mutants rhlI lasI double mutant and the las I rhlI pqsA triple mutant of PAO1. This study was supported by grants from the UK Biotechnology and Biological Sciences Research Council (Grant number BB/D007038/1) and the EU QUORMETAB project.

Supplementary material

216_2010_4341_MOESM1_ESM.pdf (274 kb)
ESM 1 (PDF 273 kb)

References

  1. 1.
    Williams P, Winzer K, Chan W, Cámara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Phil Trans Roy Soc B 362:1119–1134CrossRefGoogle Scholar
  2. 2.
    Diggle SP, Cornelis P, Williams P, Camara M (2006) 4-Quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int J Med Microbiol 296:83–91CrossRefGoogle Scholar
  3. 3.
    Chhabra SR, Philipp B, Eberl L, Givskov M, Williams P, Camara M (2005) In: S. Schulz (Ed.), Chemistry of pheromones and other semiochemicals, vol. 240. Springer Verlag. pp. 279-315Google Scholar
  4. 4.
    Winson MK, Camara M, Latifi A, Foglino M, Chhabra SR, Daykin M, Chapon V, Bycroft BW, Salmond GPC, Lazdunski A, Stewart GSAB, Williams P (1995) Multiple quorum sensing modulons interactively regulate virulence and secondary metabolism in Pseudomonas aeruginosa: identification of the signal molecules N-butanoyl-l-homoserine lactone and N-hexanoyl-l-homoserine lactone. Proc Nat Acad Sci USA 92:9427–9431CrossRefGoogle Scholar
  5. 5.
    Charlton TS, de Nys R, Netting A, Kumar N, Hentzer M, Givskov M, Kjelleberg S (2000) A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography–mass spectrometry: application to a model bacterial biofilm. Environ Microbiol 2:530–541CrossRefGoogle Scholar
  6. 6.
    Smith RS, Iglewski BH (2003) Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J Clin Invest 112:1460–1465Google Scholar
  7. 7.
    Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191CrossRefGoogle Scholar
  8. 8.
    Hays EE, Wells IC, Katzman PA, Cain CK, Jacobs FA, Thayer SA, Doisy EA, Gaby WL, Roberts EC, Muir RD, Carroll CJ, Jones LR, Wade NJ (1945) Antibiotic substances produced by Pseudomonas aeruginosa. J Biol Chem 159:725–750Google Scholar
  9. 9.
    Cornforth JW, James AT (1956) Structure of a naturally occurring antagonist of dihydrostreptomycin. Biochem J 63:124–130Google Scholar
  10. 10.
    Wells IC (1952) Antibiotic substances produced by Pseudomonas aeruginosa. Synthesis of Pyo Ib. Pyo Ic, and Pyo III. J Biol Chem 196:331–340Google Scholar
  11. 11.
    Long RA, Qureshi A, Faulkner DJ, Azam F (2003) 2-n-Pentyl-4-quinolinol produced by a marine Alteromonas sp. and its potential ecological and biogeochemical roles. Appl Environ Microbiol 69:568–576CrossRefGoogle Scholar
  12. 12.
    Machan ZA, Taylor GW, Pitt TL, Cole PJ, Wilson R (1992) 2-Heptyl-4-hydroxyquinoline N-oxide, an antistaphylococcal agent produced by Pseudomonas aeruginosa. J Antimicrob Chemother 30:615–623CrossRefGoogle Scholar
  13. 13.
    Bredenbruch F, Geffers R, Nimtz M, Buer J, Haussler S (2006) The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol 8:1318–1329CrossRefGoogle Scholar
  14. 14.
    Royt PW, Honeychuck RV, Ravich V, Ponnaluri P, Pannell LK, Buyer JS, Chandhoke V, Stalick WM, DeSesso LC, Donohue S, Ghei R, Relyea JD, Ruiz R (2001) 4-Hydroxy-2-nonylquinoline: a novel iron chelator isolated from a bacterial cell membrane. Bioorg Chem 29:387–397CrossRefGoogle Scholar
  15. 15.
    Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96CrossRefGoogle Scholar
  16. 16.
    Hooi DS, Bycroft BW, Chhabra SR, Williams P, Pritchard DI (2004) Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules. Infect Immun 72:6463–6470CrossRefGoogle Scholar
  17. 17.
    Kim K, Kim YU, Koh BH, Hwang SS, Kim SH, Lepine F, Cho YH, Lee GR (2010) HHQ and PQS, two Pseudomonas aeruginosa quorum-sensing molecules, down-regulate the innate immune responses through the nuclear factor-kappaB pathway. Immunology 129:578–588CrossRefGoogle Scholar
  18. 18.
    Lépine F, Milot S, Déziel E, He J, Rahme LG (2004) Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa. J Am Soc Mass Spectrom 15:862–869CrossRefGoogle Scholar
  19. 19.
    Diggle SP, Winzer K, Chhabra SR, Worrall KE, Camara M, Williams P (2003) The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50:29–43CrossRefGoogle Scholar
  20. 20.
    McKnight SL, Iglewski BH, Pesci EC (2000) The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 182:2702–270CrossRefGoogle Scholar
  21. 21.
    Xiao G, Déziel E, He J, Lépine F, Lesic B, Castonguay M-H, Milot S, Tampakaki AP, Stachel SE, Rahme LG (2006) MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol 62:1689–1699CrossRefGoogle Scholar
  22. 22.
    Diggle SP, Lumjiaktase P, Dipilato F, Winzer K, Kunakorn M, Barrett DA, Chhabra SR, Camara M, Williams P (2006) Functional genetic analysis reveals a 2-alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. Chem Biol 13:701–710CrossRefGoogle Scholar
  23. 23.
    Vial L, Lepine F, Milot S, Groleau MC, Dekimpe V, Woods DE, Deziel E (2008) Burkholderia pseudomallei, B. thailandensis, and B. ambifaria produce 4-hydroxy-2-alkylquinoline analogues with a methyl group at the 3 position that is required for quorum-sensing regulation. J Bacteriol 190:5339–5352CrossRefGoogle Scholar
  24. 24.
    Kawaguchi T, Chen YP, Norman RS, Decho AW (2008) Rapid screening of quorum-sensing signal N-acyl homoserine lactones by an in vitro cell-free assay. Appl Environ Microbiol 74:3667–3671CrossRefGoogle Scholar
  25. 25.
    Fletcher MP, Diggle SP, Camara M, Williams P (2007) Biosensor-based assays for PQS, HHQ and related 2-alkyl-4-quinolone quorum sensing signal molecules. Nat Protoc 2:1254–1262CrossRefGoogle Scholar
  26. 26.
    Winson MK, Swift S, Hill PJ, Sims CM, Griesmayr G, Bycroft BW, Williams P, Stewart G (1998) Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol Lett 163:193–202CrossRefGoogle Scholar
  27. 27.
    McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Cámara M, Daykin M, Swift S, Bycroft BW, Stewart GSAB, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiol SGM 143:3703–3711CrossRefGoogle Scholar
  28. 28.
    Shaw PD, Gao P, Daly SL, Cha C, Cronan JE Jr, Rinehaert KL, Farrand SK (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Nat Acad Sci USA 94:6036–6041CrossRefGoogle Scholar
  29. 29.
    Michels JJ, Allain EJ, Borchardt SA, Hu P, McCoy WF (2000) Degradation pathway of homoserine lactone bacterial signal molecules by halogen antimicrobials identified by liquid chromatography with photodiode array and mass spectrometric detection. J Chromatrogr A 898:153–165CrossRefGoogle Scholar
  30. 30.
    Milton DL, Hardman A, Camara M, Chhabra SR, Bycroft BW, Stewart GSAB, Williams P (1997) Quorum sensing in Vibrio anguillarum: characterization of the vanI/vanR locus and identification of the autoinducer N-(3-oxodecanoyl)-l-homoserine lactone. J Bacteriol 179:3004Google Scholar
  31. 31.
    Morin D, Grasland B, Vallée-Réhel K, Dufau C, Haras D (2003) On-line high-performance liquid chromatography-mass spectrometric detection and quantification of N-acylhomoserine lactones, quorum sensing signal molecules, in the presence of biological matrices. J Chromatogr A 1002:79–92CrossRefGoogle Scholar
  32. 32.
    Lin Y-H, Xu J-L, Hu J, Wang L-H, Ong SL, Leadbetter JR, Zhang L-H (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47:849–860CrossRefGoogle Scholar
  33. 33.
    Gould TA, Herman J, Krank J, Murphy RC, Churchill MEA (2006) Specificity of acyl-homoserine lactone synthases examined by mass spectrometry. J Bacteriol 188:773–783CrossRefGoogle Scholar
  34. 34.
    Ortori CA, Atkinson S, Chhabra SR, Cámara M, Williams P, Barrett DA (2007) Comprehensive profiling of n-acyl homoserine lactones produced by Yersinia pseudotuberculosis using liquid chromatography coupled to hybrid quadrupole-linear ion trap mass spectrometry. Anal Bioanal Chem 387:497–511CrossRefGoogle Scholar
  35. 35.
    Cataldi TRI, Bianco G, Abate S (2008) Profiling of N-acyl-homoserine lactones by liquid chromatography coupled with electrospray ionization and a hybrid quadrupole linear ion-trap and Fourier-transform ion-cyclotron-resonance mass spectrometry (LC-ESI-LTQ-FTICR-MS). J Mass Spectrom 43:82–96CrossRefGoogle Scholar
  36. 36.
    Taylor GW, Machan ZA, Mehmet S, Cole PJ, Wilson R (1995) Rapid identification of 4-hydroxy-2-alkylquinolines produced by Pseudomonas aeruginosa using gas chromatography–electron capture mass spectrometry. J Chromatogr B 664:458–462CrossRefGoogle Scholar
  37. 37.
    Lepine F, Milot S, Deziel E, He JX, Rahme LG (2004) Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa. J Am Soc Mass Spectrom 15:862–869CrossRefGoogle Scholar
  38. 38.
    U.S. Department of Health and Human Services, Food and Drug Administration (2001) Guidance for Industry: Bioanalytical Method ValidationGoogle Scholar
  39. 39.
    Chhabra SR, Stead P, Bainton NJ, Salmond GPC, Stewart GSAB, Williams P, Bycroft BW (1993) Autoregulation of carbpenem biosynthesis in Erwinia carotovora by analogs of N-(3-oxohexanoyl-l-homoserine lactone. J Antibiot 46:441–454Google Scholar
  40. 40.
    Chhabra SR, Harty C, Hooi DSW, Daykin M, Williams P, Pritchard DI, Bycroft BW (2003) Synthetic analogues of the bacterial signal (quorum sensing) molecule N-(3-oxododecanoyl)-l-homoserine lactone as immune modulators. J Med Chem 46:97–104CrossRefGoogle Scholar
  41. 41.
    Beatson SA, Whitchurch CB, Semmler ABT, Mattick JS (2002) Quorum sensing is not required for twitching motility in Pseudomonas aeruginosa. J Bacteriol 184:3598–3604CrossRefGoogle Scholar
  42. 42.
    Aendekerk S, Diggle SP, Song Z, Høiby N, Cornelis P, Williams P, Cámara M (2005) The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. Microbiology 151:1113–1125CrossRefGoogle Scholar
  43. 43.
    Ombaka EA, Cozens RM, Brown MR (1983) Influence of nutrient limitation of growth on stability and production of virulence factors of mucoid and nonmucoid strains of Pseudomonas aeruginosa. Rev Infect Dis 5:S880–888Google Scholar
  44. 44.
    Chugani S, Greenberg EP (2010) LuxR-homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 107:10673–10678CrossRefGoogle Scholar
  45. 45.
    Farrow JM 3 rd, Pesci EC (2007) Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal. J Bacteriol 189:3425–33CrossRefGoogle Scholar
  46. 46.
    Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P and Cámara M (2010) Quinolones: from antibiotics to autoinducers FEMS Microbiology Reviews 1–28. doi: 10.1111/j.1574-6976.2010.00247
  47. 47.
    McGrath S, Wade DS, Pesci EC (2004) Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS) FEMS. Microbiol Lett 230:27–34CrossRefGoogle Scholar
  48. 48.
    Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E, Coleman JP, Pesci EC (2005) Regulation of Pseudomonas Quinolone Signal Synthesis in Pseudomonas aeruginosa. J Bacteriol 187:4372–4380CrossRefGoogle Scholar
  49. 49.
    Whiteley M, Lee KM, Greenberg EP (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:13904–13909CrossRefGoogle Scholar
  50. 50.
    Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184:6472–6480CrossRefGoogle Scholar
  51. 51.
    Déziel E, Lépine F, Milot S, He JX, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci USA 101:1339–1344CrossRefGoogle Scholar
  52. 52.
    Eberl L (2006) Quorum sensing in the genus Burkholderia. Int J Med Microbiol 296:103–110CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Catharine A. Ortori
    • 1
  • Jean-Frédéric Dubern
    • 2
  • Siri Ram Chhabra
    • 2
  • Miguel Cámara
    • 2
  • Kim Hardie
    • 2
  • Paul Williams
    • 2
  • David A. Barrett
    • 1
    Email author
  1. 1.Centre for Analytical Bioscience, School of PharmacyUniversity of NottinghamNottinghamUK
  2. 2.School of Molecular Medical Sciences, Centre for Biomolecular SciencesUniversity of NottinghamNottinghamUK

Personalised recommendations