Analytical and Bioanalytical Chemistry

, Volume 399, Issue 6, pp 1999–2014 | Cite as

Ubiquinol formation in isolated photosynthetic reaction centres monitored by time-resolved differential FTIR in combination with 2D correlation spectroscopy and multivariate curve resolution

  • Alberto Mezzetti
  • Lionel Blanchet
  • Anna de Juan
  • Winfried Leibl
  • Cyril Ruckebusch
Original Paper

Abstract

Two-dimensional correlation analysis was carried out in combination with multivariate curve resolution–alternating least squares (MCR-ALS) to analyse time-resolved infrared (IR) difference spectra probing photo-induced ubiquinol formation in detergent-isolated reaction centres from Rhodobacter sphaeroides. The dynamic 2D IR correlation spectra have not only allowed the determination of the concomitance or non-concomitance of different chemical events through known marker bands but also have helped identify new vibrational bands related to the complex series of photochemical and redox reactions. In particular, a strong positive band located at 1565 cm−1 was found to be synchronous with the process of ubiquinol formation. In addition, a tailored MCR-ALS analysis was performed using a priori chemical knowledge of the system, in particular including the pure spectrum of one species obtained from an external measurement. Enhancing the MCR-ALS performance in this way in time-dependent processes is relevant, especially when other essential pieces of information, such as kinetic models, are unavailable. The results give evidence of four independent spectral contributions. Three of them show marker bands for a monoelectronic reduction of the primary quinone QA (QA/QA transition, first contribution), for a monoelectronic reduction of a secondary quinone QB (QB/QB transition, second contribution) and for ubiquinol formation (third contribution). The results obtained also confirm that a key rate-limiting factor is the slow ubiquinone and ubiquinol exchange among micelles, which strongly influences the kinetic profiles of the involved species.

Keywords

Chemometrics Multivariate curve resolution 2D correlation spectroscopy Rapid-scan FTIR Purple bacteria 

Supplementary material

216_2010_4325_MOESM1_ESM.pdf (248 kb)
ESM 1(PDF 247 KB)

References

  1. 1.
    Beratan DN, Skourtis SS (1998) Curr Opin Chem Biol 2:235–243CrossRefGoogle Scholar
  2. 2.
    Reece SY, Nocera DG (2009) Ann Rev Biochem 78:673–699CrossRefGoogle Scholar
  3. 3.
    Wraight CA (2006) Biochim Biophys Acta Bioenerg 1757:886–912CrossRefGoogle Scholar
  4. 4.
    Koepke J, Krammer EM, Klinger AR, Sebban P, Ullmann GM, Fritzsch G (2007) J Mol Biol 371:396–409CrossRefGoogle Scholar
  5. 5.
    Okamura MY, Paddock ML, Graige MS, Feher G (2000) Biochim Biophys Acta Bioenerg 1458:148–163CrossRefGoogle Scholar
  6. 6.
    Wraight CA (2004) Front Biosci 9:309–337CrossRefGoogle Scholar
  7. 7.
    Jones MR (2009) Biochem Soc Trans 37:400–407CrossRefGoogle Scholar
  8. 8.
    Cheap H, Bernad S, Derrien V, Gerencser L, Tandori J, de Oliveira P, Hanson DK, Maroti P, Sebban P (2009) Biochim Biophys Acta Bioenerg 1787:1505–1515CrossRefGoogle Scholar
  9. 9.
    Paddock ML, Feher G, Okamura MY (2003) FEBS Lett 555:45–50CrossRefGoogle Scholar
  10. 10.
    Noguchi T (2010) Photosynth Res 104:321–331CrossRefGoogle Scholar
  11. 11.
    Hastings G (2006) In: Golbeck JH (ed) Photosystem I: the light-driven plastocyanin:ferrodoxin oxidoreductase. Advances in photosynthesis and respiration, vol 24. Springer, Dordrecht, pp 301–318Google Scholar
  12. 12.
    Nabedryk E (1996) In: Mantsch H, Chapman D (eds) Infrared spectroscopy of biomolecules. Wiley-Liss, New York, pp 39–81Google Scholar
  13. 13.
    Nabedryk E, Breton J (2008) Biochim Biophys Acta Bioenerg 1777:1229–1248CrossRefGoogle Scholar
  14. 14.
    Noguchi T (2007) Photosynth Res 91:59–69CrossRefGoogle Scholar
  15. 15.
    Mezzetti A, Spezia R (2008) Spectrosc Int J 22:235–250Google Scholar
  16. 16.
    Blanchet L, Ruckebusch C, Mezzetti A, Huvenne J-P, de Juan A (2009) J Phys Chem B 113:6031–6040CrossRefGoogle Scholar
  17. 17.
    Hienerwadel R, Grzybek S, Fogel C, Kreutz W, Okamura MY, Paddock ML, Breton J, Nabedryk E, Maentele W (1995) Biochemistry 34:2832–2843CrossRefGoogle Scholar
  18. 18.
    Hermes S, Stachnik JM, Onidas D, Remy A, Hofmann E, Gerwert K (2006) Biochemistry 45:13741–13749CrossRefGoogle Scholar
  19. 19.
    Hastings G, Bandaranayake KM, Carrion E (2008) Biophys J 94:4383–4392CrossRefGoogle Scholar
  20. 20.
    Barry BA, Cooper IB, De Riso A, Brewer SH, Vu DM, Dyer RB (2009) Proc Natl Acad Sci USA 103:7288–7291CrossRefGoogle Scholar
  21. 21.
    Pawlowicz NP, van Stokkum IHM, Breton J, van Grondelle R, Jones MR (2010) Phys Chem Chem Phys 12: 2693–2705Google Scholar
  22. 22.
    Mezzetti A, Leibl W (2008) Vibrat Spectr 48:126–134CrossRefGoogle Scholar
  23. 23.
    Breton J, Nabedryk E (1996) Biochim Biophys Acta Bioenerg 1275:84–90CrossRefGoogle Scholar
  24. 24.
    Iwata T, Paddock ML, Okamura MY, Kandori H (2009) Biochemistry 48:1220–1229CrossRefGoogle Scholar
  25. 25.
    Mezzetti A, Nabedryk E, Breton J, Okamura MY, Paddock ML, Giacometti G, Leibl W (2002) Biochim Biophys Acta Bioenerg 1553:320–330CrossRefGoogle Scholar
  26. 26.
    Remy A, Gerwert K (2003) Nat Struct Biol 10:637–644CrossRefGoogle Scholar
  27. 27.
    Mezzetti A, Leibl W (2005) Eur Biophys J 34:921–936CrossRefGoogle Scholar
  28. 28.
    Mezzetti A, Leibl W, Breton J, Nabedryk E (2003) FEBS Lett 537:161–165CrossRefGoogle Scholar
  29. 29.
    Mezzetti A (2010) Spectrosc Int J 24:79–87Google Scholar
  30. 30.
    Blanchet L, Mezzetti A, Ruckebusch C, Huvenne JP, de Juan A (2007) Anal Bioanal Chem 387:1863–1873CrossRefGoogle Scholar
  31. 31.
    Shinkarev VP, Wraight CA (1997) Biophys J 72:2304–2319CrossRefGoogle Scholar
  32. 32.
    Ambrosone L, Mallardi A, Palazzo G, Venturoli G (2002) Phys Chem Chem Phys 4:3071–3077CrossRefGoogle Scholar
  33. 33.
    Tauler R (1995) Chemometr Intell Lab Syst 30:133–146CrossRefGoogle Scholar
  34. 34.
    de Juan A, Tauler R (2006) Crit Rev Anal Chem 36:163–176CrossRefGoogle Scholar
  35. 35.
    de Juan A, Maeder M, Martinez M, Tauler R (2000) Chemometr Intell Lab Syst 54:123–141CrossRefGoogle Scholar
  36. 36.
    Noda I (2004) Appl Spectrosc 54:994–998CrossRefGoogle Scholar
  37. 37.
    Diewok J, Ayora-Canada MJ, Lendl B (2002) Anal Chem 74:4944–4954CrossRefGoogle Scholar
  38. 38.
    Tummers PHG, Houben EJE, Jansen JFGA, Wienke D (2007) Vibrat Spectrosc 43:116–124CrossRefGoogle Scholar
  39. 39.
    Noda I (2004) Vib Spectrosc 36:143–165CrossRefGoogle Scholar
  40. 40.
    Ozaki Y, Noda I (eds) (2000) Two-dimensional correlation spectroscopy. AIP, MelvilleGoogle Scholar
  41. 41.
    Blanchet L, Ruckebusch C, Huvenne JP, de Juan A (2007) Chemometr Intell Lab Syst 89:26–35CrossRefGoogle Scholar
  42. 42.
    Isaacson RA, Lendzian F, Abresch EC, Lubitz W, Feher G (1995) Biophys J 69:311–322CrossRefGoogle Scholar
  43. 43.
    Breton J, Berthomieu C, Thibodeau DL, Nabedryk E (1991) FEBS Lett 288:109–113CrossRefGoogle Scholar
  44. 44.
    Lehmann N, Alexiev U, Fahmy K (2007) J Mol Biol 366:1129–1141CrossRefGoogle Scholar
  45. 45.
    Golub GH, Loan CFV (1989) Matrix computation, 2nd edn. The Johns Hopkins University Press, LondonGoogle Scholar
  46. 46.
    Maeder M (1987) Anal Chem 59:527–530CrossRefGoogle Scholar
  47. 47.
    Windig W (1994) Chemomet Intel Lab Syst 23:71–86CrossRefGoogle Scholar
  48. 48.
    Iwaki M, Osyczka A, Moser CC, Dutton PL, Rich PR (2004) Biochemistry 43:9477–9486CrossRefGoogle Scholar
  49. 49.
    Breton J, Nabedryk E, Allen JP, Williams JC (1997) Biochemistry 36:4515–4525CrossRefGoogle Scholar
  50. 50.
    Thibodeau DL, Nabedryk E, Hienerwadel R, Lenz F, Mäntele W, Breton J (1990) Biochim Biophys Acta Bioenerg 1020:253–259CrossRefGoogle Scholar
  51. 51.
    Barth A (2000) Prog Biophys Mol Biol 74:141–173CrossRefGoogle Scholar
  52. 52.
    Breton J, Thibodeau DL, Berthomieu C, Mäntele W, Vérmeglio A, Nabedryk E (1991) FEBS Lett 278:257–260CrossRefGoogle Scholar
  53. 53.
    Breton J, Boullais C, Burie J-R, Nabedryk E, Mioskowski C (1994) Biochemistry 33:14378–14387CrossRefGoogle Scholar
  54. 54.
    Baymann F, Robertson DE, Dutton PL, Mäntele W (1999) Biochemistry 38:13188–13199CrossRefGoogle Scholar
  55. 55.
    Ritter M, Anderka O, Ludwig B, Mäntele W, Hellwig P (2003) Biochemistry 42:12391–12399CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Alberto Mezzetti
    • 1
    • 2
  • Lionel Blanchet
    • 3
  • Anna de Juan
    • 4
  • Winfried Leibl
    • 2
  • Cyril Ruckebusch
    • 1
  1. 1.LASIR CNRS UMR 8516Université Lille1 Sciences et TechnologiesVilleneuve d’AscqFrance
  2. 2.LPB, Service de Bioénergétique, Biologie Structurale et Mécanismes, URA CNRS 2096, IBITec-S, CEA-SaclayGif-sur-Yvette cedexFrance
  3. 3.Institute for Molecules and Materials, Department of Analytical ChemistryRadboud University NijmegenNijmegenThe Netherlands
  4. 4.Department of Analytical ChemistryUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations