Analytical and Bioanalytical Chemistry

, Volume 399, Issue 2, pp 861–875 | Cite as

Accelerated sample treatment for screening of banned doping substances by GC–MS: ultrasonication versus microwave energy

  • M. Galesio
  • M. Mazzarino
  • X. de la Torre
  • F. Botrè
  • J. L. CapeloEmail author
Original Paper


A comparison between ultrasonication and microwave irradiation as tools to achieve a rapid sample treatment for the analysis of banned doping substances in human urine by means of gas chromatography–mass spectrometry (GC–MS) was performed. The following variables were studied and optimised: (i) time of treatment, (ii) temperature, (iii) microwave power and (iv) ultrasonic amplitude. The results were evaluated and compared with those achieved by the routine method used in the World Anti-Doping Agency (WADA) accredited Antidoping Laboratory of Rome. Only under the effect of the ultrasonic field was it possible to enhance the enzymatic hydrolysis reaction rate of conjugated compounds. Similar reaction yield to the routine method was achieved after 10 min for most compounds. Under microwave irradiation, denaturation of the enzyme occurs for high microwave power. The use of both ultrasonic or microwave energy to improve the reaction rate of the derivatisation of the target compounds with trimethyliodosilane/methyl-N-trimethylsilyltrifluoroacetamide (TMSI/MSTFA/NH4I/2-mercaptoethanol) was also evaluated. To test the use of the two systems in the acceleration of the reaction with TMSI, a pool of 55 banned substances and/or their metabolites were used. After 3 min of ultrasonication, 34 of the 55 compounds had recoveries similar to those obtained with the classic procedure that lasts for 30 min (Student’s t test, n = 5), 18 increased to higher silylation yields, and for the compounds 13β,17α-diethyl-3α,17β-dihydroxy-5α-gonane (norboletone metabolite 1), metoprolol and metipranolol the same results were obtained increasing the ultrasonication time to 5 min. Similar results were obtained after 3 min of microwave irradiation at 1,200 W. In this case, 30 of the 55 compounds had recoveries similar to the classic procedure (Student’s t test, n = 5) whilst 18 had higher silylation yields. For the compounds 3α-hydroxy-1α-methyl-5α-androstan-17-one (mesterolone metabolite 1), 17α-ethyl-5β-estrane-3α,17β,21-triol (norethandrolone metabolite 1), epioxandrolone, 4-chloro-6β,17β-dihydroxy-17α-methyl-1,4-androstadien-3-one (chlormetandienone metabolite 1), carphedon, esmolol and bambuterol the same results were obtained after 5 min under microwave irradiation.


Doping substances GC–MS β-Glucuronidase hydrolysis MSTFA derivatisation Ultrasonic energy Microwave energy Sample treatment Anti-doping 



M. Galésio acknowledges the Fundação para a Ciência e a Tecnología (FCT, Portugal) for his doctoral grant SFRH/BD/31652/2007. J.L. Capelo-Martínez acknowledges the Xunta de Galicia (Spain) for their Parga-Pondal Research contract.


  1. 1.
    Donike M (1993) Steroid profile in Cologne. In: Donike M, Geyer H, Gotzmann A, Mareck-Engelke U, Rauth S (eds) Proceedings of the 10th Cologne workshop on dope analysis, 7–12th June 1992. Sport und Buch Strauss Edition Sport, Koln, pp 47Google Scholar
  2. 2.
    Botrè F (2008) J Mass Spectrom 43:903–907CrossRefGoogle Scholar
  3. 3.
    Schänzer W, Delahaut P, Geyer H, Machnik M, Homing S (1996) J Chromatogr B 687:93–108CrossRefGoogle Scholar
  4. 4.
    Dehennin L, Matsumoto AM (1993) J Steroid Biochem Mol Biol 44:179–189CrossRefGoogle Scholar
  5. 5.
    Gomes RL, Meredith W, Snape CE, Sephton MA (2009) J Pharm Biomed Anal 49:1133–1140CrossRefGoogle Scholar
  6. 6.
    Mulder GJ, Coughtrie MWH, Burchell B (1990) Glucuronidation. In: Mulder GJ (ed) Conjugation reactions in drug metabolism: an integrated approach. Taylor & Francis, London, pp 51–105Google Scholar
  7. 7.
    Jiménez C, Ventura R, Segura J (2002) J Chromatogr B 767:341–351CrossRefGoogle Scholar
  8. 8.
    Carvalho VM, Nakamuraa OH, Vieira JGH (2008) J Chromatogr B 872:154–161CrossRefGoogle Scholar
  9. 9.
    Chatman K, Hollenbeck T, Hagey L, Vallee M, Purdy R, Weiss F, Siuzdak G (1999) Anal Chem 71:2358–2363CrossRefGoogle Scholar
  10. 10.
    Pozo OJ, Van Eenoo P, Deventer K, Delbeke FT (2008) TrAC Trends Anal Chem 27:657–671CrossRefGoogle Scholar
  11. 11.
    Marcos J, Pascual JÁ, de la Torre X, Segura J (2002) J Mass Spectrom 37:1059–1073CrossRefGoogle Scholar
  12. 12.
    Wang Y, Karu K, Griffiths WJ (2007) Biochimie 89:182–191CrossRefGoogle Scholar
  13. 13.
    Van Thuyne W, Van Eenoo P, Delbeke FT (2008) J Chromatogr A 1210:193–202CrossRefGoogle Scholar
  14. 14.
    Schanzer W, Donike M (1993) Anal Chim Acta 275:23–48CrossRefGoogle Scholar
  15. 15.
    Zuoa Y, Zhang K, Lin Y (2007) J Chromatogr A 1148:211–218CrossRefGoogle Scholar
  16. 16.
    Shareef A, Angove MJ, Wells JD (2006) J Chromatogr A 1108:121–128CrossRefGoogle Scholar
  17. 17.
    Thevis M, Schänzer W (2007) Anal Bioanal Chem 388:1351–1358CrossRefGoogle Scholar
  18. 18.
    Thevis M, Guddat S, Schänzer W (2009) Steroids 74:315CrossRefGoogle Scholar
  19. 19.
    Mazzarino M, de la Torre X, Botrè F (2008) Anal Bioanal Chem 392:621CrossRefGoogle Scholar
  20. 20.
    Pozo OJ, Van Eenoo P, Deventer K, Delbeke FT (2008) TrAC Trends Anal Chem 27:657CrossRefGoogle Scholar
  21. 21.
    Hintikka L, Kuuranne T, Leinonen A, Thevis M, Schanzer W, Halket J, Cowan D, Grosse J, Hemmersbach P, Nielen MWF, Kostiainen R (2008) J Mass Spectrom 43:965CrossRefGoogle Scholar
  22. 22.
    Suslick KS (1990) Science 247:1439CrossRefGoogle Scholar
  23. 23.
    Mason TJ, Lorimer JP (2002) Applied sonochemistry: the uses of power ultrasound in chemistry and processing. Wiley-VCH, WeinheimGoogle Scholar
  24. 24.
    Mason TJ (1999) Sonochemistry. Oxford University Press, OxfordGoogle Scholar
  25. 25.
    Capelo JL (2009) Ultrasound in chemistry: analytical applications. Wiley-VCH, WeinheimGoogle Scholar
  26. 26.
    Flannigan DJ, Suslick KS (2005) Nature 434:52CrossRefGoogle Scholar
  27. 27.
    Didenko YT, Suslick KS (2002) Nature 418:394CrossRefGoogle Scholar
  28. 28.
    Capelo JL, Galesio M, Felisberto GM, Vaz C, Pessoa JC (2005) Talanta 66:1272–1280CrossRefGoogle Scholar
  29. 29.
    Santos HM, Rial-Otero R, Fernandes L, Vale G, Rivas MG, Moura I, Capelo JL (2007) J Proteome Res 6:3393–3399CrossRefGoogle Scholar
  30. 30.
    Carreira RJ, Cordeiro FM, Moro AJ, Rivas MG, Rial-Otero R, Gaspar EM, Moura I, Capelo JL (2007) J Chromatogr A 1153:291–299CrossRefGoogle Scholar
  31. 31.
    Santos HM, Capelo JL (2007) Talanta 73:795–802CrossRefGoogle Scholar
  32. 32.
    Rial-Otero R, Carreira RJ, Cordeiro FM, Moro AJ, Santos HM, Vale G, Moura I, Capelo JL (2007) J Chromatogr A 1166:101–107CrossRefGoogle Scholar
  33. 33.
    de Koning S, Janssen H, Brinkman UAT (2009) Chromatographia 69:33–78CrossRefGoogle Scholar
  34. 34.
    Zu YG, Zhang S, Fu YJ, Liu W, Liu ZG, Luo M, Efferth T (2009) Eur Food Res Technol 229:43–49CrossRefGoogle Scholar
  35. 35.
    Alterman M, Hallberg AJ (2000) Org Chem 65:7984–7989CrossRefGoogle Scholar
  36. 36.
    Goni MA, Montgomery S (2000) Anal Chem 72:3116–3121CrossRefGoogle Scholar
  37. 37.
    de la Hoz A, Diaz-Ortiz A, Moreno A (2005) Chem Soc Rev 34:164–178CrossRefGoogle Scholar
  38. 38.
    Miller JN, Miller JC (2001) Statistics and chemometrics for analytical chemistry, 4th edn. Prentice Hall, New JerseyGoogle Scholar
  39. 39.
    Galesio M, Rial-Otero R, Simal-Gándara J, de la Torre X, Botrè F, Capelo JL (2010) Rapid Commun Mass Spectrom 24:2375–2385Google Scholar
  40. 40.
    Rejasse B, Lamare S, Legoy MD, Besson T (2007) J Enzyme Inhib Med Chem 22:518–526CrossRefGoogle Scholar
  41. 41.
    Yadav G, Borkar IV (2009) Ind Eng Chem Res 48:7915–7922CrossRefGoogle Scholar
  42. 42.
    Bowden JA, Colosi DM, Stutts WL, Mora-Montero DC, Garrett TJ, Yost RA (2009) Anal Chem 81:6725–6734CrossRefGoogle Scholar
  43. 43.
    Mareck U, Geyer H, Opfermann G, Thevis M, Schanzer W (2008) J Mass Spectrom 43:877–891CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • M. Galesio
    • 1
  • M. Mazzarino
    • 3
  • X. de la Torre
    • 3
  • F. Botrè
    • 3
  • J. L. Capelo
    • 1
    • 2
    Email author
  1. 1.REQUIMTE, Departamento de Química, Faculdade de Ciências e TecnologíaUniversidade Nova de LisboaMonte de CaparicaPortugal
  2. 2.BIOSCOPE Group, Physical Chemistry Department, Science FacultyUniversity of VigoVigoSpain
  3. 3.Laboratorio Antidoping di RomaFederazione Medico Sportiva ItalianaRomeItaly

Personalised recommendations