Advertisement

Analytical and Bioanalytical Chemistry

, Volume 399, Issue 1, pp 213–219 | Cite as

Inductively coupled plasma mass spectrometry: recent trends and developments

  • Carsten EngelhardEmail author
Trends

Abstract

This year inductively coupled plasma mass spectrometry (ICP-MS) moves into the fourth decade of development. In this article, some recent trends and developments in ICP-MS are reviewed, with special focus on instrumental development and emerging applications. Some key trends include a novel mass spectrometer for elemental and speciation analysis in Mattauch–Herzog geometry with a focal-plane-camera array detector. The reason for this development is the possibility to record the full elemental mass range simultaneously and all the time. Monitoring fast transient signals in chromatography or laser ablation is now possible and will become an important asset in future studies, e.g., for isotope ratio analysis. In addition, there is a lot of new activity and interest in the area of nanosciences and medicine. Here, instrumental developments are reported that allow the direct analysis of microparticles and single cells.

Figure

ICP-MS: Recent trends and developments are reviewed with special focus on instrumentation

Keywords

Inductively coupled plasma mass spectrometry Trends Ultratrace analysis Simultaneous detection Array detector Time of flight Nanoparticles Single-cell analysis Laser ablation 

Notes

Acknowledgements

This work was sponsored in part by the Deutsche Forschungsgemeinschaft (EN 927/1-1). The author is thankful to Gary M. Hieftje, Steven J. Ray, and Thorben Pfeifer for stimulating discussions.

References

  1. 1.
    Houk RS (2000) J Chem Educ 77:598–607CrossRefGoogle Scholar
  2. 2.
    Houk RS, Fassel VA, Flesch GD, Svec HJ, Gray AL, Taylor CE (1980) Anal Chem 52:2283–2289CrossRefGoogle Scholar
  3. 3.
    Gray AL (1974) Proc Soc Anal Chem 11:182–183CrossRefGoogle Scholar
  4. 4.
    Gray AL (1975) Analyst 100:289–299CrossRefGoogle Scholar
  5. 5.
    Gray AL (1975) Proc Anal Div Chem Soc 12:94–95CrossRefGoogle Scholar
  6. 6.
    Gray AL (1975) Anal Chem 47:600–601CrossRefGoogle Scholar
  7. 7.
    Bings NH, Bogaerts A, Broekaert JAC (2010) Anal Chem 82:4653–4681CrossRefGoogle Scholar
  8. 8.
    Harrington CF, Clough R, Hansen HR, Hill SJ, Tyson JF (2010) J Anal At Spectrom 25:1185–1216CrossRefGoogle Scholar
  9. 9.
    Mounicou S, Szpunar J, Lobinski R (2010) Eur J Mass Spectrom 16:243–253CrossRefGoogle Scholar
  10. 10.
    Bettmer J, Bayon MM, Encinar JR, Sanchez MLF, de la Campa MDF, Medel AS (2009) J Proteomics 72:989–1005CrossRefGoogle Scholar
  11. 11.
    Becker JS, Jakubowski N (2009) Chem Soc Rev 38:1969–1983CrossRefGoogle Scholar
  12. 12.
    Fernández B, Costa JM, Pereiro R, Sanz-Medel A (2010) Anal Bioanal Chem 396:15–29CrossRefGoogle Scholar
  13. 13.
    Garcia CC, Lindner H, Niemax K (2009) J Anal At Spectrom 24:14–26CrossRefGoogle Scholar
  14. 14.
    Vanhaecke F, Balcaen L, Malinovsky D (2009) J Anal At Spectrom 24:863–886CrossRefGoogle Scholar
  15. 15.
    Hieftje GM (2009) Nat Chem 1:10–11CrossRefGoogle Scholar
  16. 16.
    Schilling GD, Andrade FJ, Barnes JH, Sperline RP, Denton MB, Barinaga CJ, Koppenaal DW, Hieftje GM (2007) Anal Chem 79:7662–7668CrossRefGoogle Scholar
  17. 17.
    Barnes JH, Sperline R, Denton MB, Barinaga CJ, Koppenaal D, Young ET, Hieftje GM (2002) Anal Chem 74:5327–5332CrossRefGoogle Scholar
  18. 18.
    Barnes JH, Schilling GD, Sperline R, Denton MB, Young ET, Barinaga CJ, Koppenaal DW, Hieftje GM (2004) Anal Chem 76:2531–2536CrossRefGoogle Scholar
  19. 19.
    Schilling GD, Andrade FJ, Barnes JH, Sperline RP, Denton MB, Barinaga CJ, Koppenaal DW, Hieftje GM (2006) Anal Chem 78:4319–4325CrossRefGoogle Scholar
  20. 20.
    Schilling GD, Ray SJ, Sperline RP, Denton MB, Barinaga CJ, Koppenaal DW, Hieftje GM (2010) J Anal At Spectrom 25:322–327CrossRefGoogle Scholar
  21. 21.
    Schilling GD, Ray SJ, Rubinshtein AA, Felton JA, Sperline RP, Denton MB, Barinaga CJ, Koppenaal DW, Hieftje GM (2009) Anal Chem 81:5467–5473CrossRefGoogle Scholar
  22. 22.
    Rubinshtein AA, Schilling GD, Ray SJ, Sperline RP, Denton MB, Barinaga CJ, Koppenaal DW, Hieftje GM (2010) J Anal At Spectrom 25:735–738CrossRefGoogle Scholar
  23. 23.
    Felton JA, Ray SJ, Sperline RP, Denton MB, Barinaga CJ, Koppenaal DW, Hieftje GM (2009) Mass spectrograph equipped with a novel Faraday-strip array camera for use in plasma-source mass spectrometry. Paper presented at the 36th Federation of Analytical Chemistry and Spectroscopy Societies meeting, LouisvilleGoogle Scholar
  24. 24.
    Hieftje GM (2010) Array detectors for simultaneous mass analysis. Paper presented at the 2010 Pittsburgh conference on analytical chemistry and applied spectroscopy, OrlandoGoogle Scholar
  25. 25.
    Barnes JH, Schilling GD, Sperline RP, Denton MB, Young ET, Barinaga CJ, Koppenaal DW, Hieftje GM (2004) J Anal At Spectrom 19:751–756CrossRefGoogle Scholar
  26. 26.
    Barnes JH, Schilling GD, Stone SF, Sperline RP, Denton MB, Young ET, Barinaga CJ, Koppenaal DW, Hieftje GM (2004) Anal Bioanal Chem 380:227–234CrossRefGoogle Scholar
  27. 27.
    Peschel BU, Andrade F, Wetzel WC, Schilling GD, Hieftje GM, Broekaert JAC, Sperline R, Denton MB, Baninaga CJ, Koppenaal DW (2006) Spectrochim Acta B 61:42–49CrossRefGoogle Scholar
  28. 28.
    Barnes JH, Schilling GD, Hieftje GM, Sperline RP, Denton MB, Barinaga CJ, Koppenaal DW (2004) J Am Soc Mass Spectrom 15:769–776CrossRefGoogle Scholar
  29. 29.
    SPECTRO Analytical Instruments (2010) SPECTRO ICP-MS report no. 1: the analysis of drinking water. SPECTRO Analytical Instruments, KleveGoogle Scholar
  30. 30.
    Grauwiler L, Frick DA, Hattendorf B, Günther D (2010) Laser ablation inductively coupled plasma mass spectrometry using a Mattauch-Herzog ICPMS with full coverage of the elemental m/z range. Paper presented at 9. Symposium Massenspektrometrische Verfahren der Elementspurenanalyse zusammen mit dem 22. ICP-MS Anwendertreffen, BerlinGoogle Scholar
  31. 31.
    Scheffer A, Engelhard C, Sperling M, Buscher W (2008) Anal Bioanal Chem 390:249–252CrossRefGoogle Scholar
  32. 32.
    Tanner SD, Ornatsky O, Bandura DR, Baranov VI (2007) Spectrochim Acta B 62:188–195CrossRefGoogle Scholar
  33. 33.
    Ornatsky OI, Kinach R, Bandura DR, Lou X, Tanner SD, Baranov VI, Nitz M, Winnik MA (2008) J Anal At Spectrom 23:463–469CrossRefGoogle Scholar
  34. 34.
    Ornatsky O, Baranov V, Bandura DR, Tanner SD, Dick J (2006) J Immunol Methods 308:68–76CrossRefGoogle Scholar
  35. 35.
    Liu JM, Li Y, Jiang Y, Yan XP (2010) J Proteome Res 9:3545–3550CrossRefGoogle Scholar
  36. 36.
    Hu SH, Liu R, Zhang SC, Huang Z, Xing Z, Zhang XR (2009) J Am Soc Mass Spectrom 20:1096–1103CrossRefGoogle Scholar
  37. 37.
    Li F, Zhao Q, Wang CA, Lu XF, Li XF, Le XC (2010) Anal Chem 82:3399–3403CrossRefGoogle Scholar
  38. 38.
    Razumienko E, Ornatsky O, Kinach R, Milyavsky M, Lechman E, Baranov V, Winnik MA, Tanner SD (2008) J Immunol Methods 336:56–63CrossRefGoogle Scholar
  39. 39.
    Wang M, Feng WY, Zhao YL, Chai ZF (2010) Mass Spectrom Rev 29:326–348CrossRefGoogle Scholar
  40. 40.
    Stewart II, Olesik JW (1999) J Am Soc Mass Spectrom 10:159–174CrossRefGoogle Scholar
  41. 41.
    McClenathan DM, Ray SJ, Wetzel WC, Hieftje GM (2004) Anal Chem 76:158A–166ACrossRefGoogle Scholar
  42. 42.
    GBC Scientific Equipment (2000) Technical note: the advantages of time of flight mass spectrometry for elemental analysis. GBC Scientific Equipment, BraesideGoogle Scholar
  43. 43.
    Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou XD, Pavlov S, Vorobiev S, Dick JE, Tanner SD (2009) Anal Chem 81:6813–6822CrossRefGoogle Scholar
  44. 44.
    Lou XD, Zhang GH, Herrera I, Kinach R, Ornatsky O, Baranov V, Nitz M, Winnik MA (2007) Angew Chem Int Ed 46:6111–6114CrossRefGoogle Scholar
  45. 45.
    Tanner SD, Bandura DR, Ornatsky O, Baranov VI, Nitz M, Winnik MA (2008) Pure Appl Chem 80:2627–2641CrossRefGoogle Scholar
  46. 46.
    Abdelrahman AI, Ornatsky O, Bandura D, Baranov V, Kinach R, Dai S, Thickett SC, Tanner S, Winnik MA (2010) J Anal At Spectrom 25:260–268CrossRefGoogle Scholar
  47. 47.
    Thickett SC, Abdelrahman AI, Ornatsky O, Bandura D, Baranov V, Winnik MA (2010) J Anal At Spectrom 25:269–281CrossRefGoogle Scholar
  48. 48.
    Krupp E, Seby F, Rodríguez Martín-Doimeadios R, Holliday A, Moldován M, Köllensperger G, Hann S, Donard OFX (2005) In: Nelms SM (ed) Inductively coupled plasma mass spectrometry handbook. Oxford, BlackwellGoogle Scholar
  49. 49.
    Hamester M, Lindemann T, Hinrichs J, Oki T, McSheehy S, Wills J (2010) Enhancing sensitivity of sector field ICP-MS. Paper presented at 9. Symposium Massenspektrometrische Verfahren der Elementspurenanalyse zusammen mit dem 22. ICP-MS Anwendertreffen, BerlinGoogle Scholar
  50. 50.
    Dietiker R, Egorova T, Hattendorf B, Günther D (2010) CFD investigations on the plasma expansion in a ICPMS Interface. Paper presented at 9. Symposium Massenspektrometrische Verfahren der Elementspurenanalyse zusammen mit dem 22. ICP-MS Anwendertreffen, BerlinGoogle Scholar
  51. 51.
    Macedone JH, Gammon DJ, Farnsworth PB (2001) Spectrochim Acta B 56:1687–1695CrossRefGoogle Scholar
  52. 52.
    Radicic WN, Olsen JB, Nielson RV, Macedone JH, Farnsworth PB (2006) Spectrochim Acta B 61:686–695CrossRefGoogle Scholar
  53. 53.
    Ma H, Taylor N, Farnsworth PB (2009) Spectrochim Acta B 64:384–391CrossRefGoogle Scholar
  54. 54.
    Enke CG, Ray SJ, Graham AW, Hieftje GM (2010) Distance of flight mass spectrometry – a proof-of-concept instrument. Paper presented at the 2010 Pittsburgh conference on analytical chemistry and applied spectroscopy, OrlandoGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute of Inorganic and Analytical ChemistryUniversity of MünsterMünsterGermany

Personalised recommendations