Analytical and Bioanalytical Chemistry

, Volume 399, Issue 2, pp 823–830 | Cite as

Shotgun lipidomics for candidate biomarkers of urinary phospholipids in prostate cancer

  • Hye Kyeong Min
  • Sangsoo Lim
  • Bong Chul Chung
  • Myeong Hee Moon
Original Paper

Abstract

Qualitative and quantitative profiling of six different categories of urinary phospholipids (PLs) from patients with prostate cancer was performed to develop an analytical method for the discovery of candidate biomarkers by shotgun lipidomics method. Using nanoflow liquid chromatography–electrospray ionization–tandem mass spectrometry, we identified the molecular structures of a total of 70 PL molecules (21 phosphatidylcholines (PCs), 11 phosphatidylethanolamines (PEs), 17 phosphatidylserines (PSs), 11 phosphatidylinositols (PIs), seven phosphatidic acids, and three phosphatidylglycerols) from urine samples of healthy controls and prostate cancer patients by data-dependent collision-induced dissociation. Identified molecules were quantitatively examined by comparing the MS peak areas. From statistical analyses, one PC, one PE, six PSs, and two PIs among the PL species showed significant differences between controls and cancer patients (p < 0.05, Student’s t test), with concentration changes of more than threefold. Cluster analysis of both control and patient groups showed that 18:0/18:1-PS and 16:0/22:6-PS were 99% similar in upregulation and that the two PSs (18:1/18:0, 18:0/20:5) with two PIs (18:0/18:1 and 16:1/20:2) showed similar (>95%) downregulation. The total amount of each PL group was compared among prostate cancer patients according to the Gleason scale as larger or smaller than 6. It proposes that the current study can be utilized to sort out possible diagnostic biomarkers of prostate cancer.

Figure

Dendrogram of urinary phospholipids from prostate cancer

Keywords

Phospholipids Quantitative analysis nLC–ESI–MS/MS Urine Prostate cancer Biomarker 

References

  1. 1.
    Gronberg H (2003) Lancet 163:859–864CrossRefGoogle Scholar
  2. 2.
    Clarke RA, Schirra HJ, Catto JW, Lavin MF, Gardiner RA (2010) Cancer 2:1125–1154CrossRefGoogle Scholar
  3. 3.
    Hsing AW, Devesa SS (2001) Epidemiol Rev 23:3–13Google Scholar
  4. 4.
    Gerke V, Creutz CE, Moss SE (2005) Nat Rev Mol Cell Biol 6:449–461CrossRefGoogle Scholar
  5. 5.
    Matsuda Y, Miyashita A, Fujimoto Y, Umeda T, Akihama S (1996) Biol Pharm Bull 19:1083–1085Google Scholar
  6. 6.
    Irani J, Salomon L, Soulié M, Zlotta A, de la Taille A, Dore B, Millet C (2005) Urology 65:533–537CrossRefGoogle Scholar
  7. 7.
    Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM (2009) Nature 457:910–914CrossRefGoogle Scholar
  8. 8.
    Swanson MG, Vigneron DB, Tabatabai ZL, Males RG, Schmitt L, Carroll PR, James JK, Hurd RE, Kurhanewicz J (2003) Magn Reson Med 50:944–954CrossRefGoogle Scholar
  9. 9.
    Brouwers JFHM, Vernooji EAAM, Tielens AGM, van Golde LMG (1999) J Lipid Res 40:164–169Google Scholar
  10. 10.
    Wright MM, Howe AG, Zaremberg V (2004) Biochem Cell Biol 82:18–26CrossRefGoogle Scholar
  11. 11.
    Leach MO, Verrill M, Glaholm J, Smith TAD, Collins DJ, Payne GS, Sharp JC, Ronen SM, McCready VR, Powles TJ, Smith IE (1998) NMR Biomed 11:314–340CrossRefGoogle Scholar
  12. 12.
    Williams CM, Maunder K (1993) Eur J Clin Nutr 47:260–267Google Scholar
  13. 13.
    Bougnoux P, Chajes V, Lanson M, Hacene K, Body G, Couet C, Folch OL (1992) Breast Cancer Res Treat 20:185–194CrossRefGoogle Scholar
  14. 14.
    Xu Y, Shen Z, Wiper DW, Wu M, Morton RE, Elson P, Kennedy AW, Belinson J, Markman M, Casey G (1998) JAMA 280:719–723CrossRefGoogle Scholar
  15. 15.
    Sutphen R, Xu Y, Wilbanks GD, Fiorica J, Grendys EC Jr, LaPolla JP, Arango H, Hoffman MS, Martino M, Wakeley K, Griffin D, Blanco RW, Cantor AB, Xiao YJ, Krischer JP (2004) Cancer Epidemiol Biomark Prev 13:1185–1191Google Scholar
  16. 16.
    Han X, Gross RW (1995) J Am Soc Mass Spectrom 6:1202–1210CrossRefGoogle Scholar
  17. 17.
    Koivusalo M, Haimi P, Heikinheimo L, Kostiainen R, Somerharju P (2001) J Lipid Res 42:663–672Google Scholar
  18. 18.
    Taguchi R, Hayakawa J, Takeuchi Y, Ishida M (2000) J Mass Spectrom 35:953–966CrossRefGoogle Scholar
  19. 19.
    Isaac G, Bylund D, Mansson J-E, Markides KE, Bergquist J (2003) J Neurosci Methods 128:111–119CrossRefGoogle Scholar
  20. 20.
    Hermansson M, Uphoff A, Käkelä R, Somerharju P (2005) Anal Chem 77:2166–2175CrossRefGoogle Scholar
  21. 21.
    Taguchi R, Houjou T, Nakanishi H, Yamazaki T, Ishida M, Imagawa M, Shimizu T (2005) J Chromatogr B 823:26–36CrossRefGoogle Scholar
  22. 22.
    Bang DY, Kang D, Moon MH (2006) J Chromatogr A 1104:222–229CrossRefGoogle Scholar
  23. 23.
    Bang DY, Ahn E, Moon MH (2007) J Chromatogr B 852:268–277CrossRefGoogle Scholar
  24. 24.
    Ahn E, Kim H, Chung BC, Moon MH (2007) J Sep Sci 30:2598–2604CrossRefGoogle Scholar
  25. 25.
    Kim H, Ahn E, Moon MH (2008) Analyst 133:1656–1663CrossRefGoogle Scholar
  26. 26.
    Kim H, Min HK, Kong G, Moon MH (2009) Anal Bioanal Chem 393:1649–1656CrossRefGoogle Scholar
  27. 27.
    Min HK, Kong G, Moon MH (2010) Anal Bioanal Chem 396:1273–1280CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Hye Kyeong Min
    • 1
  • Sangsoo Lim
    • 1
  • Bong Chul Chung
    • 2
  • Myeong Hee Moon
    • 1
  1. 1.Department of ChemistryYonsei UniversitySeoulSouth Korea
  2. 2.Life Sciences Division, Korea Institute of Science and Technology (KIST)SeoulSouth Korea

Personalised recommendations