Analytical and Bioanalytical Chemistry

, Volume 399, Issue 9, pp 3025–3032 | Cite as

Identification of the finishing technique of an early eighteenth century musical instrument using FTIR spectromicroscopy

  • Loïc BertrandEmail author
  • Laurianne Robinet
  • Serge X. Cohen
  • Christophe Sandt
  • Anne-Solenn Le Hô
  • Balthazar Soulier
  • Agnès Lattuati-Derieux
  • Jean-Philippe Echard
Original Paper


The study of varnishes from musical instruments presents the difficulty of analysing very thin layers of heterogeneous materials on samples most of which are generally brittle and difficult to prepare. Such study is crucial to the understanding of historical musical instrument varnishing practices since written sources before 1800 are very rare and not precise. Fourier-transform infrared (FTIR) spectroscopy and imaging methods were applied to identify the major chemical components within the build-up of the varnish layers on a cello made by one of the most prominent French violin-makers of the eighteenth century (Jacques Boquay, ca. 1680–1730). Two types of FTIR imaging methods were used: scanning with a synchrotron-based microscope and full-field imaging using a 2D imager with a conventional source. An interpretation of the results obtained from these studies on the Boquay cello is that the maker first applied a proteinaceous layer, probably gelatine-based animal glue. He later applied a second layer based on a mixture of a drying oil and diterpenic resin from Pinaceae sp. From an historical perspective, the results complement previous studies by describing a second technique used for musical instrument finishes at the beginning of the eighteenth century in Europe.


FTIR spectromicroscopy study of a cello made by the luthier Jacques Boquay (Paris, ca. 1680-1729) shows that the maker first applied a proteinaceous layer, probably gelatine-based animal glue.


Fourier transform infrared (FTIR) imaging Historical materials Musical instruments Varnish 



We thank D. Jaillard (CCME, Orsay) and M.-A. Languille (IPANEMA, SOLEIL) for sample ultra-microtomy, A. von Bohlen for SEM/EDX (ISAS, Dortmund), C. Egasse and S. Thao-Heu (CRCC, Paris) for performing chromatographic analyses, E. Quirico (LPG, UMR5109 CNRS, Grenoble) for full-field FTIR imaging analyses, P. Dumas (SMIS beamline, SOLEIL) and P. Cook (IPANEMA, SOLEIL) for their critical reading of the manuscript and M.-A. Tordeux (SOLEIL) for interesting discussions on the stability of the SOLEIL source. Specific additional funding was provided by Cité de la musique, the SOLEIL synchrotron and the French Ministry of Culture.

Supplementary material

216_2010_4288_MOESM1_ESM.pdf (2.2 mb)
ESM (PDF 2280 kb)


  1. 1.
    Echard JP, Lavedrine B (2008) Review on the characterisation of ancient stringed musical instruments varnishes and implementation of an analytical strategy. J Cult Herit 9:420–429CrossRefGoogle Scholar
  2. 2.
    Latour G, Echard JP, Soulier B, Emond I, Vaiedelich S, Elias M (2009) Structural and optical properties of wood and wood finishes studied using optical coherence tomography: application to an 18th century Italian violin. Appl Opt 48(33):6485–91CrossRefGoogle Scholar
  3. 3.
    Echard JP, Bertrand L (2010) Complementary spectroscopic analyses of varnishes of historical musical instruments. Spectrosc Eur 22(2):12–15Google Scholar
  4. 4.
    Echard JP, Cotte M, Dooryhée E, Bertrand L (2008) Insights into the varnishes of historical musical instruments using synchrotron micro-analytical methods. Appl Phys A 92(1):77–81CrossRefGoogle Scholar
  5. 5.
    Bartoll J, Hahn O, Schade U (2008) Application of synchrotron infrared radiation in the study of organic coatings in cross-sections. Stud Conserv 53(1):1–8Google Scholar
  6. 6.
    Spring M, Ricci C, Peggie DA, Kazarian SG (2008) ATR-FTIR imaging for the analysis of organic materials in paint cross sections: case studies on paint samples from the National Gallery, London. Anal Bioanal Chem 392(1–2):37–45CrossRefGoogle Scholar
  7. 7.
    Cotte M, Dumas P, Taniguchi Y, Checroun E, Walter P, Susini J (2009) Recent applications and current trends in cultural heritage science using synchrotron-based Fourier transform infrared micro-spectroscopy. C R Physique 10(7):590–600CrossRefGoogle Scholar
  8. 8.
    Gruchow F, Machill S, Thiele S, Herm C, Salzer R (2009) Imaging FTIR spectroscopic investigations of wood: paint interface of aged polychrome art objects. e-Preserv Sci 6:145–150Google Scholar
  9. 9.
    Joseph E, Prati S, Sciutto G, Ioele M, Santopadre P, Mazzeo R (2010) Performance evaluation of mapping and linear imaging FTIR microspectroscopy for the characterisation of paint cross sections. Anal Bioanal Chem 396(2):899–910CrossRefGoogle Scholar
  10. 10.
    Levenson E, Lerch P, Martin MC (2006) Infrared imaging: synchrotrons vs arrays, resolution vs speed. Infrared Phys Technol 49:45–52CrossRefGoogle Scholar
  11. 11.
    Miller LM, Smith RJ (2005) Synchrotrons versus globars, point-detectors versus focal plane arrays: selecting the best source and detector for specific infrared microspectroscopy and imaging applications. Vib Spectrosc 38:237–240CrossRefGoogle Scholar
  12. 12.
    Salzer R, Siesler HW (2009) Infrared and Raman spectroscopic imaging. Wiley, WeinheimCrossRefGoogle Scholar
  13. 13.
    Milliot S (1997) Histoire de la Lutherie Parisienne. Tome 2: les Luthiers du 18e siècle. Les Amis de la MusiqueGoogle Scholar
  14. 14.
    Chen H, Ferrari C, Angiuli M, Yao J, Raspi C, Bramanti E (2010) Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydr Polym 82(3):772–778CrossRefGoogle Scholar
  15. 15.
    R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0Google Scholar
  16. 16.
    Ward JH (1963) Hierachical grouping to optimize an objective function. J Am Stat Assoc 58:236–244CrossRefGoogle Scholar
  17. 17.
    Echard JP, Bertrand L, von Bohlen A, Le Hô AS, Paris C, Bellot-Gurlet L, Soulier B, Lattuati-Derieux A, Thao S, Robinet L, Lavédrine B, Vaiedelich S (2010) Nature of the extraordinary finish of Stradivari’s instruments. Angew Chem Int Ed 49(1):197–201Google Scholar
  18. 18.
    Derieux A, Rochut S, Papillon MC, Pepe C (2001) Identification des colles protéiques présentes dans les œuvres d’art par couplage CG/SM à trappe d’ions. C R Chimie 4(4):295–300Google Scholar
  19. 19.
    Echard JP, Benoit C, Peris-Vicente J, Malecki V, Gimeno-Adelantado JV, Vaiedelich S (2007) Gas chromatography/mass spectrometry characterization of historical varnishes of ancient Italian lutes and violin. Anal Chim Acta 584(1):172–180CrossRefGoogle Scholar
  20. 20.
    Echard JP, Vaiedelich S. (2008) Quelques résultats d’analyses chimiques sur des vernis d’instruments d’Antonio Stradivari. De la peinture de chevalet à l’instrument de musique: vernis, liants et couleurs, 6–7 mars 2007, Cité de la musique, Paris, 104–113Google Scholar
  21. 21.
    Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25(3):469–487CrossRefGoogle Scholar
  22. 22.
    Payne KJ, Veis A (1988) Fourier transform IR spectroscopy of collagen and gelatin solutions: deconvolution of the amide I band for conformational studies. Biopolymers 27:1749–1760CrossRefGoogle Scholar
  23. 23.
    Rivenc R, Phenix A, Singer B, Balcar N (2008) L’élimination des vernis huile-résine. Première partie : huile de lin et colophane, Cité de la Musique, Paris, 89–101Google Scholar
  24. 24.
    Meilunas RJ, Bentsen JG, Steinberg A (1990) Analysis of aged paint binders by FTIR spectroscopy. Stud Conserv 35(1):33–51CrossRefGoogle Scholar
  25. 25.
    Scalarone D, Lazzari M, Chiantore O (2002) Ageing behaviour and pyrolytic characterisation of diterpenic resins used as art materials: colophony and Venice turpentine. J Anal Appl Pyrolysis 64:345–361CrossRefGoogle Scholar
  26. 26.
    Scalarone D, Lazzari M, Chiantore O (2003) Ageing behaviour and analytical pyrolysis characterisation of diterpenic resins used as art materials: Manila copal and sandarac. J Anal Appl Pyrolysis 68–69:115–136CrossRefGoogle Scholar
  27. 27.
    Levenson E, Lerch P, Martin MC (2008) Spatial resolution limits for synchrotron-based spectromicroscopy in the mid- and near-infrared. J Synchrotron Radiat 15:323–328CrossRefGoogle Scholar
  28. 28.
    Nadolski LS, Besson JC, Bouvet F, Brunelle P, Cassinari L, Denard JC, Filhol JM, Hubert N, Lamarre JF, Loulergue A, Nadji A, Pedeau D, Tordeux MA (2008) Orbit stability status and improvement at soleil. Proc EPAC08, Genoa, Italy, 3134-3136Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Loïc Bertrand
    • 1
    • 2
    Email author
  • Laurianne Robinet
    • 1
    • 2
  • Serge X. Cohen
    • 1
    • 2
  • Christophe Sandt
    • 3
  • Anne-Solenn Le Hô
    • 4
  • Balthazar Soulier
    • 5
    • 6
  • Agnès Lattuati-Derieux
    • 7
  • Jean-Philippe Echard
    • 6
    • 7
  1. 1.IPANEMASynchrotron SOLEILGif-sur-YvetteFrance
  2. 2.UPS CNRS 3352Synchrotron SOLEILGif-sur-YvetteFrance
  3. 3.SMIS BeamlineSynchrotron SOLEILGif-sur-YvetteFrance
  4. 4.UMR 171 CNRSLaboratoire du Centre de recherche et de restauration des musées de FranceParisFrance
  5. 5.Staatliche Akademie der Bildenden KünsteInstitut für Technologie der MalereiStuttgartGermany
  6. 6.Laboratoire de recherche et de restaurationMusée de la musique, Cité de la musiqueParisFrance
  7. 7.Centre de Recherche sur la Conservation des Collections MNHN-CNRS-MCCParisFrance

Personalised recommendations