Analytical and Bioanalytical Chemistry

, Volume 399, Issue 2, pp 635–649 | Cite as

Determination of galactosamine impurities in heparin samples by multivariate regression analysis of their 1H NMR spectra

  • Qingda Zang
  • David A. Keire
  • Richard D. Wood
  • Lucinda F. Buhse
  • Christine M. V. Moore
  • Moheb Nasr
  • Ali Al-Hakim
  • Michael L. Trehy
  • William J. Welsh
Original Paper


Heparin, a widely used anticoagulant primarily extracted from animal sources, contains varying amounts of galactosamine impurities. Currently, the United States Pharmacopeia (USP) monograph for heparin purity specifies that the weight percent of galactosamine (%Gal) may not exceed 1%. In the present study, multivariate regression (MVR) analysis of 1H NMR spectral data obtained from heparin samples was employed to build quantitative models for the prediction of %Gal. MVR analysis was conducted using four separate methods: multiple linear regression, ridge regression, partial least squares regression, and support vector regression (SVR). Genetic algorithms and stepwise selection methods were applied for variable selection. In each case, two separate prediction models were constructed: a global model based on dataset A which contained the full range (0–10%) of galactosamine in the samples and a local model based on the subset dataset B for which the galactosamine level (0–2%) spanned the 1% USP limit. All four regression methods performed equally well for dataset A with low prediction errors under optimal conditions, whereas SVR was clearly superior among the four methods for dataset B. The results from this study show that 1H NMR spectroscopy, already a USP requirement for the screening of contaminants in heparin, may offer utility as a rapid method for quantitative determination of %Gal in heparin samples when used in conjunction with MVR approaches.


Heparin Galactosamine impurities Proton nuclear magnetic resonance (1H NMR) Multivariate regression (MVR) Variable selection 


FDA disclaimer

The findings and conclusions in this article have not been formally disseminated by the Food and Drug Administration and should not be construed to represent any agency determination or policy.


  1. 1.
    Ampofo SA, Wang HM, Linhardt RJ (1991) Disaccharide compositional analysis of heparin and heparan sulfate using capillary zone electrophoresis. Anal Biochem 199:249–255CrossRefGoogle Scholar
  2. 2.
    Rabenstein DL (2002) Heparin and heparan sulfate: structure and function. Nat Prod Rep 19:312–331CrossRefGoogle Scholar
  3. 3.
    Casu B (1990) Heparin structure. Haemostasis 20:62–73Google Scholar
  4. 4.
    Sudo M, Sato K, Chaidedgumjorn A, Toyoda H, Toida T, Imanari T (2001) 1H nuclear magnetic resonance spectroscopic analysis for determination of glucuronic and iduronic acids in dermatan sulfate, heparin, and heparan sulfate. Anal Biochem 297:42–51CrossRefGoogle Scholar
  5. 5.
    Linhardt RJ (1991) Hepairn: an important drug enters its seventh decade. Chem Ind 2:45–50Google Scholar
  6. 6.
    Lepor NE (2007) Anticoagulation for acute coronary syndromes: from heparin to direct thrombin inhibitors. Rev Cardiovasc Med 8(suppl 3):S9–S17Google Scholar
  7. 7.
    Fischer KG (2007) Essentials of anticoagulation in hemodialysis. Hemodial Int 11:178–189CrossRefGoogle Scholar
  8. 8.
    Maruyama T, Toida T, Imanari T, Yu G, Linhardt RJ (1998) Conformational changes and anticoagulant activity of chondroitin sulfate following its O-sulfonation. Carbohydr Res 306:35–43CrossRefGoogle Scholar
  9. 9.
    Guerrini M, Bisio A, Torri G (2001) Combined quantitative 1H and 13C nuclear magnetic resonance spectroscopy for characterization of heparin preparations. Semin Thromb Hemost 27:473–482CrossRefGoogle Scholar
  10. 10.
    Toida T, Maruyama T, Ogita Y, Suzuki A, Toyoda H, Imanari T, Linhardt RJ (1999) Preparation and anticoagulant activity of fully O-sulphonated glycosaminoglycans. Int J Biol Macromol 26:233–241CrossRefGoogle Scholar
  11. 11.
    Griffin CC, Linhardt RJ, Van Gorp CL, Toida T, Hileman RE, Schubert RL II, Brown SE (1995) Isolation and characterization of heparan sulfate from crude porcine intestinal mucosal peptidoglycan heparin. Carbohydr Res 276:183–197CrossRefGoogle Scholar
  12. 12.
    Pervin A, Gallo C, Jandik KA, Han XJ, Linhardt RJ (1995) Preparation and structural characterization of large heparin-derived oligosaccharides. Glycobiology 5:83–95CrossRefGoogle Scholar
  13. 13.
    Korir AK, Larive CK (2009) Advances in the separation, sensitive detection, and characterization of heparin and heparan sulfate. Anal Bioanal Chem 393:155–169CrossRefGoogle Scholar
  14. 14.
    Eldridge SL, Korir AK, Gutierrez SM, Campos F, Limtiaco JFK, Larive CK (2008) Heterogeneity of depolymerized heparin SEC fractions: to pool or not to pool? Carbohydr Res 343:2963–2970CrossRefGoogle Scholar
  15. 15.
    Casu B, Guerrini M, Naggi A, Torri G, De-Ambrosi L, Boveri G, Gonella S, Cedro A, Ferró L, Lanzarotti E, Paterno M, Attolini M, Valle MG (1996) Characterization of sulfation patterns of beef and pig mucosal heparins by nuclear magnetic resonance spectroscopy. Arzneimittelforschung 46:472–477Google Scholar
  16. 16.
    Guerrini M, Zhang Z, Shriver Z, Naggi A, Masuko S, Langer R, Casu B, Linhardt RJ, Torri G, Sasisekharan R (2009) Orthogonal analytical approaches to detect potential contaminants in heparin. PNAS 106:16956–16961CrossRefGoogle Scholar
  17. 17.
    Wielgos T, Havel K, Ivanova N, Weinberger R (2009) Determination of impurities in heparin by capillary electrophoresis using high molarity phosphate buffers. J Pharm Biomed Anal 49:319–326CrossRefGoogle Scholar
  18. 18.
    Limtiaco JF, Jones CJ, Larive CK (2009) Characterization of heparin impurities with HPLC-NMR using weak anion exchange chromatography. Anal Chem 81:10116–10123CrossRefGoogle Scholar
  19. 19.
    Trehy ML, Reepmeyer JC, Kolinski RE, Westenberger BJ, Buhse LF (2009) Analysis of heparin sodium by SAX/HPLC for contaminants and impurities. J Pharm Biomed Anal 49:670–673CrossRefGoogle Scholar
  20. 20.
    Beyer T, Diehl B, Randel G, Humpfer E, Schäfer H, Spraul M, Schollmayer C, Holzgrabe U (2008) Quality assessment of unfractionated heparin using 1H nuclear magnetic resonance spectroscopy. J Pharm Biomed Anal 48:13–19CrossRefGoogle Scholar
  21. 21.
    Domanig R, Jöbstl W, Gruber S, Freudemann T (2009) One-dimensional cellulose acetate plate electrophoresis–a feasible method for analysis of dermatan sulfate and other glycosaminoglycan impurities in pharmaceutical heparin. J Pharm Biomed Anal 49:151–155CrossRefGoogle Scholar
  22. 22.
    Perlin AS, Sauriol F, Cooper B, Folkman J (1987) Dermatan sulfate in pharmaceutical heparins. Thromb Haemost 58:792–793Google Scholar
  23. 23.
    Guerrini M, Beccati D, Shriver Z, Naggi A, Viswanathan K, Bisio A, Capila I, Lansing JC, Guglieri S, Fraser B, Al-Hakim A, Gunay NS, Zhang Z, Robinson L, Buhse L, Nasr M, Woodcock J, Langer R, Venkataraman G, Linhardt RJ, Casu B, Torri G, Sasisekharan R (2008) Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat Biotechnol 26:669–675CrossRefGoogle Scholar
  24. 24.
    Sitkowski J, Bednarek E, Bocian W, Kozerski L (2008) Assessment of oversulfated chondroitin sulfate in low molecular weight and unfractioned heparins diffusion ordered nuclear magnetic resonance spectroscopy method. J Med Chem 51:7663–7665CrossRefGoogle Scholar
  25. 25.
    Rudd TR, Skidmore MA, Guimond SE, Cosentino C, Torri G, Fernig DG, Lauder RM, Guerrini M, Yates EA (2009) Glycosaminoglycan origin and structure revealed by multivariate analysis of NMR and CD spectra. Glycobiology 19:52–67CrossRefGoogle Scholar
  26. 26.
    Ruiz-Calero V, Saurina J, Galceran MT, Hernández-Cassou S, Puignou L (2002) Estimation of the composition of heparin mixtures from various origins using proton nuclear magnetic resonance and multivariate calibration methods. Anal Bioanal Chem 373:259–265CrossRefGoogle Scholar
  27. 27.
    Ruiz-Calero V, Saurina J, Galceran MT, Hernández-Cassou S, Puignou L (2000) Potentiality of proton nuclear magnetic resonance and multivariate calibration methods for the determination of dermatan sulfate contamination in heparin samples. Analyst 125:933–938CrossRefGoogle Scholar
  28. 28.
    Ruiz-Calero V, Saurina J, Hernández-Cassou S, Galceran MT, Puignou L (2002) Proton nuclear magnetic resonance characterization of glycosaminolgycans using chemometric techniques. Analyst 127:407–415CrossRefGoogle Scholar
  29. 29.
    Keire DA, Ye H, Trehy ML, Ye W, Kolinski RE, Westenberger BJ, Buhse LF, Nasr M, Al-Hakim A (2010) Characterization of currently marketed heparin products: key tests for quality assurance. Anal Bioanal Chem (in press)Google Scholar
  30. 30.
    Weljie AM, Newton J, Mercier P, Carison E, Slupsky CM (2006) Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 78:4430–4442CrossRefGoogle Scholar
  31. 31.
    R Development Core Team. R: software, a language and environment for statistical computing. R Development Core Team, Foundation for Statistical Computing.
  32. 32.
    Varmuza K, Filzmoser P (2009) Introduction to multivariate statistical analysis in chemometrics. CRC, Boca RatonCrossRefGoogle Scholar
  33. 33.
    Maindonald J, Braun J (2003) Data analysis and graphics using R. Cambridge University Press, CambridgeGoogle Scholar
  34. 34.
    Estienne F, Massart DL, Zanier-Szydlowski N, Marteau P (2000) Multivariate calibration with Raman spectroscopic data: a case study. Anal Chim Acta 424:185–201CrossRefGoogle Scholar
  35. 35.
    Carneiro RL, Braga JWB, Bottoli CBG, Poppi RJ (2007) Application of genetic algorithm for selection of variables for the BLLS method applied to determination of pesticides and metabolites in wine. Anal Chim Acta 595:51–58CrossRefGoogle Scholar
  36. 36.
    Broadhurst D, Goodacre R, Jones A, Rowland JJ, Kell DB (1997) Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry. Anal Chim Acta 348:71–86CrossRefGoogle Scholar
  37. 37.
    Leardi R (2001) Genetic algorithms in chemometrics and chemistry: a review. J Chemom 15:559–569CrossRefGoogle Scholar
  38. 38.
    Jouan-Rimbaud D, Massart D, Leardi R, De Noord OE (1995) Genetic algorithms as a tool for wavelength selection in multivariate calibration. Anal Chem 67:4295–4301CrossRefGoogle Scholar
  39. 39.
    Liebmann B, Friedl A, Varmuza K (2009) Determination of glucose and ethanol in bioethanol production by near infrared spectroscopy and chemometrics. Anal Chim Acta 642:171–178CrossRefGoogle Scholar
  40. 40.
    Gourvénec S, Capron X, Massart DL (2004) Genetic algorithms (GA) applied to the orthogonal projection approach (OPA) for variable selection. Anal Chim Acta 519:11–21CrossRefGoogle Scholar
  41. 41.
    Forshed J, Schuppe-Koistinen I, Jacobsson SP (2003) Peak alignment of NMR signals by means of a genetic algorithm. Anal Chim Acta 487:189–199CrossRefGoogle Scholar
  42. 42.
    Üstün B, Melssen WJ, Oudenhuijzen M, Buydens LMC (2005) Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization. Anal Chim Acta 544:292–305CrossRefGoogle Scholar
  43. 43.
    Huang J, Brennan D, Sattler L, Alderman J, Lane B, O’Mathuna C (2002) A comparison of calibration methods based on calibration data size and robustness. Chemom Intell Lab Syst 62:25–35CrossRefGoogle Scholar
  44. 44.
    Czekaj T, Wu W, Walczak B (2005) About kernel latent variable approaches and SVM. J Chemom 19:341–354CrossRefGoogle Scholar
  45. 45.
    Tistaert C, Dejaegher B, Nguyen Hoai N, Chataigné G, Riviere C, Nguyen Thi Hong V, Van Chau M, Quetin-Leclercq J, Vander Heyden Y (2009) Potential antioxidant compounds in Mallotus species fingerprints. Part I: indication, using linear multivariate calibration techniques. Anal Chim Acta 649:24–32CrossRefGoogle Scholar
  46. 46.
    Sun M, Zheng Y, Wei H, Chen J, Cai J, Ji M (2009) Enhanced replacement method-based quantitative structure–activity relationship modeling and support vector classification of 4-anilino-3-quinolinecarbonitriles as Src kinase inhibitors. QSAR Comb Sci 28:312–324CrossRefGoogle Scholar
  47. 47.
    Zhu D, Ji B, Meng C, Shi B, Tu Z, Qing Z (2007) The performance of ν-support vector regression on determination of soluble solids content of apple by acousto-optic tunable filter near-infrared spectroscopy. Anal Chim Acta 598:227–234CrossRefGoogle Scholar
  48. 48.
    Liu H, Zhang R, Yao X, Liu M, Hu Z, Fan B (2004) Prediction of electrophoretic mobility of substituted aromatic acids in different aqueous-alcoholic solvents by capillary zone electrophoresis based on support vector machine. Anal Chim Acta 525:31–41CrossRefGoogle Scholar
  49. 49.
    Vapnik V (1995) The nature of statistical learning theory. Springer, New YorkGoogle Scholar
  50. 50.
    Vapnik V (1998) Statistical learning theory. Wiley, New YorkGoogle Scholar
  51. 51.
    Li H, Liang Y, Xu Q (2009) Support vector machines and its applications in chemistry. Chemom Intell Lab Syst 95:188–198CrossRefGoogle Scholar
  52. 52.
    Thissen U, Pepers M, Üstün B, Melssen WJ, Buydens LMC (2004) Comparing support vector machines to PLS for spectral regression applications. Chemom Intell Lab Syst 73:169–179CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Qingda Zang
    • 1
    • 2
    • 3
  • David A. Keire
    • 4
  • Richard D. Wood
    • 2
  • Lucinda F. Buhse
    • 4
  • Christine M. V. Moore
    • 5
  • Moheb Nasr
    • 5
  • Ali Al-Hakim
    • 5
  • Michael L. Trehy
    • 4
  • William J. Welsh
    • 1
  1. 1.Department of Pharmacology, Robert Wood Johnson Medical SchoolUniversity of Medicine & Dentistry of New JerseyPiscatawayUSA
  2. 2.Snowdon, Inc.Monmouth JunctionUSA
  3. 3.Department of Health Informatics, School of Health Related ProfessionsUniversity of Medicine & Dentistry of New JerseyNewarkUSA
  4. 4.Division of Pharmaceutical Analysis, Food and Drug Administration, CDERSt LouisUSA
  5. 5.Office of New Drug Quality Assessment, Food and Drug Administration, CDERSilver SpringUSA

Personalised recommendations