Analytical and Bioanalytical Chemistry

, Volume 398, Issue 7–8, pp 2949–2954 | Cite as

A one-step etching method to produce gold nanoparticle coated silicon microwells and microchannels

  • Teena James
  • Jeong Hyun Cho
  • Rohan Fernandes
  • Jatinder S. Randhawa
  • David H. Gracias
Technical Note

Abstract

Gold (Au) nanoparticles (NPs) have large surface areas and novel optical properties and can be readily functionalized using thiol-based chemistry; hence, they are useful in bioanalytical chemistry. Here, we describe a one-step, plasma-etching process that results in the spontaneous formation of Au NP coated recessed microstructures in silicon (Si). Mechanistically, the plasma etch rate of Si was enhanced in the vicinity of 10–100 nm thick Au patterns resulting in the formation of microwells or microchannels uniformly coated with 20–30 nm sized Au NPs. The methodology provides versatility in the types of microstructures that can be formed by varying the shape and dimensions of the Au patterns and the etch time. We also describe selective binding of antibodies to Au NP coated Si microwells using thiol-based surface modification.

Keywords

Microfluidics Plasma Nanofluidics Nanotechnology 

References

  1. 1.
    Andersson H, Van Den Berg A (2004) Lab Chip 4:98–103CrossRefGoogle Scholar
  2. 2.
    Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Anal Chem 74:2623–2636CrossRefGoogle Scholar
  3. 3.
    Zhu H, Snyder M (2001) Curr Opin Chem Biol 5:40–45CrossRefGoogle Scholar
  4. 4.
    Charnley M, Textor M, Khademhosseini A, Lutolf MP (2009) Integr Biol 1:625–634CrossRefGoogle Scholar
  5. 5.
    Senaratne W, Andruzzi L, Ober CK (2005) Biomacromolecules 6:2427–2448CrossRefGoogle Scholar
  6. 6.
    Mrksich M, Whitesides GM (1996) Annu Rev Biophys Biomol Struct 25:55–78CrossRefGoogle Scholar
  7. 7.
    Eustis S, El-Sayed MA (2006) Chem Soc Rev 35:209–217CrossRefGoogle Scholar
  8. 8.
    He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ et al (2000) J Am Chem Soc 122:9071–9077CrossRefGoogle Scholar
  9. 9.
    Wang L, Li T, Du Y, Chen C, Li B et al (2010) Biosens Bioelectron 25:2622–2626CrossRefGoogle Scholar
  10. 10.
    Yap FL, Zhang Y (2007) Biosens Bioelectron 22:775–788CrossRefGoogle Scholar
  11. 11.
    Luo L-B, Chen L-M, Zhang M-L, He Z-B, Zhang W-F et al (2009) J Phys Chem C 113:9191–9196CrossRefGoogle Scholar
  12. 12.
    Ahmed S, Ryan KM (2008) Adv Mater 20:4745–4750CrossRefGoogle Scholar
  13. 13.
    Coburn JW, Winters HF (1979) J Vac Sci Technol 16:391–403CrossRefGoogle Scholar
  14. 14.
    Fedynyshyn TH, Grynkewich GW, Chen BA, Ma TP (1989) J Electrochem Soc 136:1799–1804CrossRefGoogle Scholar
  15. 15.
    Kataoka Y, Shinmura T, Kanoh M (2000) J Vac Sci Technol A 18:388–392CrossRefGoogle Scholar
  16. 16.
    Fedynyshyn TH, Grynkewich GW, Dumas RH (1988) J Electrochem Soc 135:268–269CrossRefGoogle Scholar
  17. 17.
    Randhawa JS, Bernfeld A, Keung M, Volinsky AA, Gracias DH (2008) Appl Phys Lett 92:211907/1-3CrossRefGoogle Scholar
  18. 18.
    Magunov AN (2000) Instrum Exp Tech 43:706–712CrossRefGoogle Scholar
  19. 19.
    Bokhonov B, Korchagin M (2000) J Alloys Compd 312:238–250CrossRefGoogle Scholar
  20. 20.
    Baumann FH, Schröter W (1991) Phys Rev B 43:6510–6519CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Teena James
    • 1
  • Jeong Hyun Cho
    • 1
  • Rohan Fernandes
    • 1
  • Jatinder S. Randhawa
    • 1
  • David H. Gracias
    • 1
    • 2
  1. 1.Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of ChemistryJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations