Skip to main content

Advertisement

Log in

Multivariate statistical differentiation of renal cell carcinomas based on lipidomic analysis by ambient ionization imaging mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Desorption electrospray ionization (DESI) mass spectrometry (MS) was used in an imaging mode to interrogate the lipid profiles of thin tissue sections of 11 sample pairs of human papillary renal cell carcinoma (RCC) and adjacent normal tissue and nine sample pairs of clear cell RCC and adjacent normal tissue. DESI-MS images showing the spatial distributions of particular glycerophospholipids (GPs) and free fatty acids in the negative ion mode were compared to serial tissue sections stained with hematoxylin and eosin (H&E). Increased absolute intensities as well as changes in relative abundance were seen for particular compounds in the tumor regions of the samples. Multivariate statistical analysis using orthogonal projection to latent structures treated partial least square discriminate analysis (PLS-DA) was used for visualization and classification of the tissue pairs using the full mass spectra as predictors. PLS-DA successfully distinguished tumor from normal tissue for both papillary and clear cell RCC with misclassification rates obtained from the validation set of 14.3% and 7.8%, respectively. It was also used to distinguish papillary and clear cell RCC from each other and from the combined normal tissues with a reasonable misclassification rate of 23%, as determined from the validation set. Overall DESI-MS imaging combined with multivariate statistical analysis shows promise as a molecular pathology technique for diagnosing cancerous and normal tissue on the basis of GP profiles.

Molecular disease diagnostics by DESI without sample preparation. a Good information is obtained by mapping the distribution of individual compounds in the tissue (e.g., PI(18:0/20:4). b Even better discrimination between tumor and healthy tissue is achieved using PLS-DA to consider all the data after having established through a training set of samples the features that correlate with disease as recognized by standard H&E stain pathological examination

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Athar M (2002) Oxidative stress and experimental carcinogenesis. Indian J Exp Biol 40(6):656–667

    CAS  Google Scholar 

  2. Sakai K, Okuyama H, Yura J, Takeyama H, Shinagawa N, Tsuruga N, Kato K, Miura K, Kawase K, Tsujimura T, Naruse T, Koike A (1992) Composition and turnover of phospholipids and neutral lipids in human breast-cancer and reference tissues. Carcinogenesis 13(4):579–584

    Article  CAS  Google Scholar 

  3. Shimma S, Sugiura Y, Hayasaka T, Hoshikawa Y, Noda T, Setou M (2007) MALDI-based imaging mass spectrometry revealed abnormal distribution of phospholipids in colon cancer liver metastasis. J Chromatogr B: AnalTechnol Biomed Life Sci 855(1):98–103

    Article  CAS  Google Scholar 

  4. Aboagye EO, Bhujwalla ZM (1999) Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res 59(1):80–84

    CAS  Google Scholar 

  5. Glunde K, Jie C, Bhujwalla ZM (2004) Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Res 64(12):4270–4276

    Article  CAS  Google Scholar 

  6. Alonso T, Morgan RO, Marvizon JC, Zarbl H, Santos E (1988) Malignant transformation by ras and other oncogenes produces common alterations in inositol phospholipid signaling pathways. Proc Natl Acad Sci USA 85(12):4271–4275

    Article  CAS  Google Scholar 

  7. Alonso T, Santos E (1990) Increased intracellular glycerophosphoinositol is a biochemical marker for transformation by membrane-associated and cytoplasmic oncogenes. Biochem Biophys Res Commun 171(1):14–19

    Article  CAS  Google Scholar 

  8. Valitutti S, Cucchi P, Colletta G, Di Filippo C, Corda D (1991) Transformation by the k-ras oncogene correlates with increases in phospholipase a2 activity, glycerophosphoinositol production and phosphoinositide synthesis in thyroid cells. Cell Signal 3(4):321–332

    Article  CAS  Google Scholar 

  9. Yamaji-Hasegawa A, Tsujimoto M (2006) Asymmetric distribution of phospholipids in biomembranes. Biol Pharm Bull 29(8):1547–1553

    Article  CAS  Google Scholar 

  10. Utsugi T, Schroit AJ, Connor J, Bucana CD, Fidler IJ (1991) Elevated expression of phosphatidylserine in the outer-membrane leaflet of human tumor-cells and recognition by activated human blood monocytes. Cancer Res 51(11):3062–3066

    CAS  Google Scholar 

  11. Zwaal RFA, Comfurius P, Bevers EM (2005) Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci 62(9):971–988

    Article  CAS  Google Scholar 

  12. Chaurio RA, Janko C, Munoz LE, Frey B, Herrmann M, Gaipl US (2009) Phospholipids: key players in apoptosis and immune regulation. Molecules 14(12):4892–4914

    Article  CAS  Google Scholar 

  13. Kim R, Emi M, Tanabe K, Arihiro K (2006) Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 66(11):5527–5536

    Article  CAS  Google Scholar 

  14. Sandra F, Esposti MD, Ndebele K, Gona P, Knight D, Rosenquist M, Khosravi-Far R (2005) Tumor necrosis factor-related apoptosis-inducing ligand alters mitochondrial membrane lipids. Cancer Res 65(18):8286–8297

    Article  CAS  Google Scholar 

  15. Mollinedo F, Gajate C, Martin-Santamaria S, Gago F (2004) Et-18-och3 (edelfosine): a selective antitumour lipid targeting apoptosis through intracellular activation of fas/cd95 death receptor. Curr Med Chem 11(24):3163–3184

    CAS  Google Scholar 

  16. Wiseman JM, Ifa DR, Song Q, Cooks RG (2006) Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew Chem Int Ed 45(43):7188–7192

    Article  CAS  Google Scholar 

  17. Chaurand P, Cornett DS, Caprioli RM (2006) Molecular imaging of thin mammalian tissue sections by mass spectrometry. Curr Opin Biotechnol 17(4):431–436

    Article  CAS  Google Scholar 

  18. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Meth 4(10):828–833

    Article  CAS  Google Scholar 

  19. Xu BJ, Gonzalez AL, Kikuchi T, Yanagisawa K, Massion PP, Wu H, Mason SE, Olson SJ, Shyr Y, Carbone DP, Caprioli RM (2008) MALDI-MS derived prognostic protein markers for resected non-small cell lung cancer. Proteomics Clin Appl 2(10–11):1508–1517

    Article  CAS  Google Scholar 

  20. Doroshenko VM, Laiko VV, Taranenko NI, Berkout VD, Lee HS (2002) Recent developments in atmospheric pressure MALDI mass spectrometry. Int J Mass Spectrom 221(1):39–58

    Article  CAS  Google Scholar 

  21. Fletcher JS, Lockyer NP, Vaidyanathan S, Vickerman JC (2007) TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (c-60) primary ions. Anal Chem 79(6):2199–2206

    Article  CAS  Google Scholar 

  22. Winograd N (2003) Prospects for imaging TOF-SIMS: from fundamentals to biotechnology. Appl Surf Sci 203:13–19

    Article  Google Scholar 

  23. Nemes P, Barton AA, Vertes A (2009) Three-dimensional imaging of metabolites in tissues under ambient conditions by laser ablation electrospray ionization mass spectrometry. Anal Chem 81(16):6668–6675

    Article  CAS  Google Scholar 

  24. Nemes P, Barton AA, Li Y, Vertes A (2008) Ambient molecular imaging and depth profiling of live tissue by infrared laser ablation electrospray ionization mass spectrometry. Anal Chem 80(12):4575–4582

    Article  CAS  Google Scholar 

  25. Nemes P, Vertes A (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem 79(21):8098–8106

    Article  CAS  Google Scholar 

  26. Kertesz V, Ford MJ, Van Berkel GJ (2005) Automation of a surface sampling probe/electrospray mass spectrometry system. Anal Chem 77(22):7183–7189

    Article  CAS  Google Scholar 

  27. Shelley JT, Ray SJ, Hieftje GM (2008) Laser ablation coupled to a flowing atmospheric pressure afterglow for ambient mass spectral imaging. Anal Chem 80(21):8308–8313

    Article  CAS  Google Scholar 

  28. Schafer KC, Denes J, Albrecht K, Szaniszlo T, Balog J, Skoumal R, Katona M, Toth M, Balogh L, Takats Z (2009) In vivo, in situ tissue analysis using rapid evaporative ionization mass spectrometry. Angew Chem Int Ed 48(44):8240–8242

    Article  Google Scholar 

  29. Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306(5695):471–473

    Article  CAS  Google Scholar 

  30. Dill AL, Ifa DR, Manicke NE, Zheng OY, Cooks RG (2009) Mass spectrometric imaging of lipids using desorption electrospray ionization. J Chromatogr B Anal Technol Biomed Life Sci 877(26):2883–2889

    Article  CAS  Google Scholar 

  31. Kertesz V, Van Berkel GJ (2008) Improved imaging resolution in desorption electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 22(17):2639–2644

    Article  CAS  Google Scholar 

  32. Wiseman JM, Puolitaival SM, Takats Z, Cooks RG, Caprioli R (2005) Mass spectrometric profiling of intact biological tissue by using desorption electrospray ionization. Angew Chem Int Ed 44(43):7094–7097

    Article  CAS  Google Scholar 

  33. Dill AL, Ifa DR, Manicke NE, Costa AB, Ramos-Vara JA, Knapp DW, Cooks RG (2009) Lipid profiles of canine invasive transitional cell carcinoma of the urinary bladder and adjacent normal tissue by desorption electrospray ionization imaging mass spectrometry. Anal Chem 81(21):8758–8764

    Article  CAS  Google Scholar 

  34. Eberlin LS, Dill AL, Costa AB, Ifa DR, Cheng L, Masterson T, Koch M, Ratliff TL, Cooks RG (2010) Cholesterol sulfate imaging in human prostate cancer tissue by desorption electrospray ionization mass spectrometry. Anal Chem 82(9):3430–3434

    Article  CAS  Google Scholar 

  35. Eberlin LS, Dill AL, Golby AJ, Ligon KL, Wiseman JM, Cooks RG, Agar NYR (2010) Discrimination of human astrocytoma subtypes by lipid analysis using desorption electrospray ionization imaging mass spectrometry. Angew Chem Int Ed 49(34):5953–5956

    CAS  Google Scholar 

  36. Cheng LA, Williamson SR, Zhang SB, MacLennan GT, Montironi R, Lopez-Beltran A (2010) Understanding the molecular genetics of renal cell neoplasia: implications for diagnosis, prognosis and therapy. Expert Rev Anticancer Ther 10(6):843–864

    Article  CAS  Google Scholar 

  37. Manicke NE, Kistler T, Ifa DR, Cooks RG, Ouyang Z (2009) High-throughput quantitative analysis by desorption electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 20(2):321–325

    Article  CAS  Google Scholar 

  38. Eberlin LS, Ifa DR, Wu C, Cooks RG (2010) Three-dimensional visualization of mouse brain by lipid analysis using ambient ionization mass spectrometry. Angew Chem Int Ed 49(5):873–876.

    CAS  Google Scholar 

  39. Ifa DR, Wiseman JM, Song QY, Cooks RG (2007) Development of capabilities for imaging mass spectrometry under ambient conditions with desorption electrospray ionization (DESI). Int J Mass Spectrom 259:8–15

    Article  CAS  Google Scholar 

  40. Trygg J, Wold S (2002) Orthogonal projections to latent structures (O-PLS). J Chemom 16(3):119–128.

    Article  CAS  Google Scholar 

  41. Team RDC (2009) R: a language and environment for statistical computing (trans: Book citations: Books without editor: E. Wingender GRiE, VCH, Weinheim, 1993, p. 215. Books with editor: T. D. In: Atwood JL, Davies JED, MacNicol DD, Vögtle F, Suslick KS (eds) Tullius in Comprehensive supramolecular chemistry, vol. 5, Pergamon, Oxford, 1996, pp 317–343.). Vienna, Austria

  42. Wehrens RM, Mevik BH (2007) PLS: partial least squares regression (PLSR) and principal component regression (PCR) R package versiion 21-0 http://meviknet/work/software/plshtml

  43. De Meyer T, Sinnaeve D, Van Gasse B, Tsiporkova E, Rietzschel ER, De Buyzere ML, Gillebert TC, Bekaert S, Martins JC, Van Criekinge W (2008) NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm. Anal Chem 80(10):3783–3790

    Article  Google Scholar 

  44. Pulfer M, Murphy RC (2003) Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 22(5):332–364

    Article  CAS  Google Scholar 

  45. Manicke NE, Wiseman JM, Ifa DR, Cooks RG (2008) Desorption electrospray ionization (DESI) mass spectrometry and tandem mass spectrometry (MS/MS) of phospholipids and sphingolipids: ionization, adduct formation, and fragmentation. J Am Soc Mass Spectrom 19(4):531–543

    Article  CAS  Google Scholar 

  46. Hsu FF, Turk J (2000) Characterization of phosphatidylinositol, phosphatidylinositol-4-phosphate, and phosphatidylinositol-4, 5-bisphosphate by electrospray ionization tandem mass spectrometry: a mechanistic study. J Am Soc Mass Spectrom 11(11):986–999

    Article  CAS  Google Scholar 

  47. Hsu FF, Turk J (2008) Structural characterization of unsaturated glycerophospholipids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 19(11):1681–1691

    Article  CAS  Google Scholar 

  48. Hsu FF, Turk J (2005) Studies on phosphatidylserine by tandem quadrupole and multiple stage quadrupole ion-trap mass spectrometry with electrospray ionization: structural characterization and the fragmentation processes. J Am Soc Mass Spectrom 16(9):1510–1522

    Article  CAS  Google Scholar 

  49. Murphy RC (1993) Mass spectrometry of lipids. Plenum, New York

    Google Scholar 

  50. Nefliu M, Smith JN, Venter A, Cooks RG (2008) Internal energy distributions in desorption electrospray ionization (DESI). J Am Soc Mass Spectrom 19(3):420–427

    Article  CAS  Google Scholar 

  51. Clarke R, Ressom HW, Wang AT, Xuan JH, Liu MC, Gehan EA, Wang Y (2008) The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nat Rev Cancer 8(1):37–49

    Article  CAS  Google Scholar 

  52. Lechevallier E (2007) Core biopsy of solid renal masses under ct guidance. Eur Urol Suppl 6(8):540–543

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Purdue University Center for Cancer Research and its director, Timothy Ratliff, for assistance in obtaining the human kidney cancer samples. This work was supported by the National Institutes of Health (Grant 1 R21 EB00 9459-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Graham Cooks.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 869 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dill, A.L., Eberlin, L.S., Zheng, C. et al. Multivariate statistical differentiation of renal cell carcinomas based on lipidomic analysis by ambient ionization imaging mass spectrometry. Anal Bioanal Chem 398, 2969–2978 (2010). https://doi.org/10.1007/s00216-010-4259-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4259-6

Keywords

Navigation