Analytical and Bioanalytical Chemistry

, Volume 399, Issue 2, pp 727–735 | Cite as

Targeted analysis of glycomics liquid chromatography/mass spectrometry data

  • Jonathan M. Dreyfuss
  • Christopher Jacobs
  • Yevgeniy Gindin
  • Gary Benson
  • Gregory O. Staples
  • Joseph Zaia
Original Paper


Hydrophilic interaction chromatography (HILIC) liquid chromatography/mass spectrometry (LC/MS) is appropriate for all native and reductively aminated glycan classes. HILIC carries the advantage that retention times vary predictably according to oligosaccharide composition. Chromatographic conditions are compatible with sensitive and reproducible glycomics analysis of large numbers of samples. The data are extremely useful for quantitative profiling of glycans expressed in biological tissues. With these analytical developments, the rate-limiting factor for widespread use of HILIC LC/MS in glycomics is the analysis of the data. In order to eliminate this problem, a Java-based open source software tool, Manatee, was developed for targeted analysis of HILIC LC/MS glycan datasets. This tool uses user-defined lists of compositions that specify the glycan chemical space in a given biological context. The program accepts high-resolution LC/MS data using the public mzXML format and is capable of processing a large data file in a few minutes on a standard desktop computer. The program allows mining of HILIC LC/MS data with an output compatible with multivariate statistical analysis. It is envisaged that the Manatee tool will complement more computationally intensive LC/MS processing tools based on deconvolution and deisotoping of LC/MS data. The capabilities of the tool were demonstrated using a set of HILIC LC/MS data on organ-specific heparan sulfates.


Unsupervised heat map of the 25 most abundant HS compositions among 5 bovine organs with hierarchical clustering of rows and columns


Glycomics Glycosaminoglycan Heparan sulfate Mass spectrometry Bioinformatics Proteoglycan 



Matthew Walsh tested the Manatee program and provided helpful comments on the manuscript. Funding was provided by NIH grants P41RR10888 and R01HL098950 and by an NSF Integrative Graduate Education and Research Traineeship.

This research utilized the Isotope Distribution Calculator developed by the Pacific Northwest National Laboratory, supported by the NIH National Center for Research Resources (Grant RR018522), the W.R. Wiley Environmental Molecular Science Laboratory (a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research and located at PNNL), and the National Institute of Allergy and Infectious Diseases (NIH/DHHS through interagency agreement Y1-AI-4894-01). PNNL is operated by Battelle Memorial Institute for the US Department of Energy under contract DE-AC05-76RL0 1830.

Supplementary material

216_2010_4235_MOESM1_ESM.pdf (2.8 mb)
ESM 1 (PDF 2845 kb)


  1. 1.
    Wuhrer M, Koeleman CA, Hokke CH, Deelder AM (2005) Protein glycosylation analyzed by normal-phase nano-liquid chromatography–mass spectrometry of glycopeptides. Anal Chem 77:886–894CrossRefGoogle Scholar
  2. 2.
    Bruggink C, Wuhrer M, Koeleman CA, Barreto V, Liu Y, Pohl C, Ingendoh A, Hokke CH, Deelder AM (2005) Oligosaccharide analysis by capillary-scale high-pH anion-exchange chromatography with on-line ion-trap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 829:136–143CrossRefGoogle Scholar
  3. 3.
    Wuhrer M, Koeleman CAM, Deelder AM, Hokke CN (2004) Normal-phase nanoscale liquid chromatography–mass spectrometry of underivatized oligosaccharides at low-femtomole sensitivity. Anal Chem 76:833–838CrossRefGoogle Scholar
  4. 4.
    Staples GO, Shi X, Zaia J (2010) Extended NS domains reside at the non-reducing end of heparan sulfate chains. J Biol Chem 285:18336–18343CrossRefGoogle Scholar
  5. 5.
    Staples GO, Naimy H, Yin H, Kileen K, Kraiczek K, Costello CE, Zaia J (2010) Improved hydrophilic interaction chromatography LC/MS of heparinoids using a chip with postcolumn makeup flow. Anal Chem 82:516–522CrossRefGoogle Scholar
  6. 6.
    Naimy H, Leymarie N, Zaia J (2010) Screening for anticoagulant heparan sulfate octasaccharides and fine structure characterization using tandem mass spectrometry. Biochemistry 49:3743–3752CrossRefGoogle Scholar
  7. 7.
    Staples G, Bowman M, Costello CE, Hitchcock A, Lau J, Leymarie N, Miller C, Naimy H, Shi X, Zaia J (2009) A chip-based amide-HILIC LC/MS platform for glycosaminoglycan glycomics. Proteomics 9:686–695CrossRefGoogle Scholar
  8. 8.
    Naimy H, Leymarie N, Bowman M, Zaia J (2008) Characterization of heparin oligosaccharides binding specifically to antithrombin III using mass spectrometry. Biochemistry 47:3155–3161CrossRefGoogle Scholar
  9. 9.
    Hitchcock A, Yates KE, Costello C, Zaia J (2008) Comparative glycomics of connective tissue glycosaminoglycans. Proteomics 8:1384–1397CrossRefGoogle Scholar
  10. 10.
    Horn DM, Zubarev RA, McLafferty FW (2000) Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. J Am Soc Mass Spectrom 11:320–332CrossRefGoogle Scholar
  11. 11.
    Jaitly N, Mayampurath A, Littlefield K, Adkins JN, Anderson GA, Smith RD (2009) Decon2LS: an open-source software package for automated processing and visualization of high resolution mass spectrometry data. BMC Bioinform 10:87CrossRefGoogle Scholar
  12. 12.
    Mueller LN, Rinner O, Schmidt A, Letarte S, Bodenmiller B, Brusniak MY, Vitek O, Aebersold R, Muller M (2007) SuperHirn—a novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics 7:3470–3480CrossRefGoogle Scholar
  13. 13.
    Li XJ, Yi EC, Kemp CJ, Zhang H, Aebersold R (2005) A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid chromatography-mass spectrometry. Mol Cell Proteomics 4:1328–1340CrossRefGoogle Scholar
  14. 14.
    Vakhrushev SY, Dadimov D, Peter-Katalinic J (2009) Software platform for high-throughput glycomics. Anal Chem 81:3252–3260CrossRefGoogle Scholar
  15. 15.
    Souady J, Dadimov D, Kirsch S, Bindila L, Peter-Katalinic J, Vakhrushev SY (2010) Software utilities for the interpretation of mass spectrometric data of glycoconjugates: application to glycosphingolipids of human serum. Rapid Commun Mass Spectrom 24:1039–1048CrossRefGoogle Scholar
  16. 16.
    Pedrioli PG, Eng JK, Hubley R, Vogelzang M, Deutsch EW, Raught B, Pratt B, Nilsson E, Angeletti RH, Apweiler R, Cheung K, Costello CE, Hermjakob H, Huang S, Julian RK, Kapp E, McComb ME, Oliver SG, Omenn G, Paton NW, Simpson R, Smith R, Taylor CF, Zhu W, Aebersold R (2004) A common open representation of mass spectrometry data and its application to proteomics research. Nat Biotechnol 22:1459–1466CrossRefGoogle Scholar
  17. 17.
    Trans-Proteomic Pipeline, Sashimi Project (2010) Trapper (Mass Hunter converter). Available at
  18. 18.
    Bellew M, Coram M, Fitzgibbon M, Igra M, Randolph T, Wang P, May D, Eng J, Fang R, Lin C, Chen J, Goodlett D, Whiteaker J, Paulovich A, McIntosh M (2006) A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS. Bioinformatics 22:1902–1909CrossRefGoogle Scholar
  19. 19.
    Pacific Northwest National Laboratory (2009) Isotope pattern calculator. Richland. Available at
  20. 20.
    Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, Smyth GK (2007) A comparison of background correction methods for two-colour microarrays. Bioinformatics 23:2700–2707CrossRefGoogle Scholar
  21. 21.
    Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman VC, Dudoit S, Irizarry R, Huber W (eds) Bioinformatics and computational biology solutions using R and bioconductor, R. Springer, New York, pp 397–420CrossRefGoogle Scholar
  22. 22.
    R Development Core Team (2009) R: a language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. Available at
  23. 23.
    Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471CrossRefGoogle Scholar
  24. 24.
    Bulow HE, Hobert O (2006) The molecular diversity of glycosaminoglycans shapes animal development. Annu Rev Cell Dev Biol 22:375–407CrossRefGoogle Scholar
  25. 25.
    Kreuger J, Spillmann D, Li JP, Lindahl U (2006) Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 174:323–327CrossRefGoogle Scholar
  26. 26.
    Ernst S, Langer R, Cooney CL, Sasisekharan R (1995) Enzymatic degradation of glycosaminoglycans. Crit Rev Biochem Mol Biol 30:387–444CrossRefGoogle Scholar
  27. 27.
    Ahn J, Bones J, Yu YQ, Rudd PM, Gilar M (2010) Separation of 2-aminobenzamide labeled glycans using hydrophilic interaction chromatography columns packed with 1.7 microm sorbent. J Chromatogr B Analyt Technol Biomed Life Sci 878:403–408CrossRefGoogle Scholar
  28. 28.
    Royle L, Campbell MP, Radcliffe CM, White DM, Harvey DJ, Abrahams JL, Kim YG, Henry GW, Shadick NA, Weinblatt ME, Lee DM, Rudd PM, Dwek RA (2008) HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem 376:1–12CrossRefGoogle Scholar
  29. 29.
    Domann PJ, Pardos-Pardos AC, Fernandes DL, Spencer DI, Radcliffe CM, Royle L, Dwek RA, Rudd PM (2007) Separation-based glycoprofiling approaches using fluorescent labels. Proteomics 7(Suppl 1):70–76CrossRefGoogle Scholar
  30. 30.
    Hitchcock AM, Yates KE, Shortkroff S, Costello CE, Zaia J (2006) Optimized extraction of glycosaminoglycans from normal and osteoarthritic cartilage for glycomics profiling. Glycobiology 17:25–35CrossRefGoogle Scholar
  31. 31.
    Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, Linhardt RJ, Mohammadi M (2000) Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 6:743–750CrossRefGoogle Scholar
  32. 32.
    Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL (2000) Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407:1029–1034CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jonathan M. Dreyfuss
    • 1
  • Christopher Jacobs
    • 1
  • Yevgeniy Gindin
    • 1
    • 2
  • Gary Benson
    • 1
  • Gregory O. Staples
    • 3
    • 4
  • Joseph Zaia
    • 3
    • 5
  1. 1.Graduate Program in BioinformaticsBoston UniversityBostonUSA
  2. 2.Genetics Branch, National Cancer InstituteNational Institutes of HealthBethesdaUSA
  3. 3.Center for Biomedical Mass Spectrometry, Department of BiochemistryBoston UniversityBostonUSA
  4. 4.Agilent LaboratoriesSanta ClaraUSA
  5. 5.Boston University Medical CampusBostonUSA

Personalised recommendations