Analytical and Bioanalytical Chemistry

, Volume 399, Issue 1, pp 301–321 | Cite as

DC insulator dielectrophoretic applications in microdevice technology: a review

  • Soumya K. Srivastava
  • Aytug Gencoglu
  • Adrienne R. Minerick
Review

Abstract

Dielectrophoresis is a noninvasive, nondestructive, inexpensive, and fast technique for the manipulation of bioparticles. Recent advances in the field of dielectrophoresis (DEP) have resulted in new approaches for characterizing the behavior of particles and cells using direct current (DC) electric fields. In such approaches, spatial nonuniformities are created in the channel by embedding insulating obstacles in the channel or flow field in order to perform separation or trapping. This emerging field of dielectrophoresis is commonly termed DC insulator dielectrophoresis (DC-iDEP), insulator-based dielectrophoresis (iDEP), or electrodeless dielectrophoresis (eDEP). In many microdevices, this form of dielectrophoresis has advantages over traditional AC-DEP, including single material microfabrication, remotely positioned electrodes, and reduced fouling of the test region. DC-iDEP applications have included disease detection, separation of cancerous cells from normal cells, and separation of live from dead bacteria. However, there is a need for a critical report to integrate these important research findings. The aim of this review is to provide an overview of the current state-of-art technology in the field of DC-iDEP for the separation and trapping of inert particles and cells. In this article, a review of the concepts and theory leading to the manipulation of particles via DC-iDEP is given, and insulating obstacle geometry designs and the characterization of device performance are discussed. This review compiles and compares the significant findings obtained by researchers in handling and manipulating particles.

Figure

Common insulating obstacle geometries reported in the literature. Red zones indicate where the particles experience the maximum dielectrophoretic effect under DC or DC plus AC-biased electric field conditions

Keywords

DC dielectrophoresis Insulator-based dielectrophoresis Electrodeless dielectrophoresis Microfluidics Electrokinetic separations Bioparticles 

References

  1. 1.
    Gawron AJ, Martin RS, Lunte SM (2001) Microchip electrophoretic separation systems for biomedical and pharmaceutical analysis. Eur J Pharm Sci 14(1):1–12CrossRefGoogle Scholar
  2. 2.
    Tüdos AJ, Besselink GAJ, Schasfoort RBM (2001) Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1:83–95CrossRefGoogle Scholar
  3. 3.
    Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B Chem 1:244–248CrossRefGoogle Scholar
  4. 4.
    Srivastava SK, Daggolu PR, Burgess S, Minerick AR (2008) Dielectrophoretic characterization of erythrocytes: positive abo blood types. Electrophoresis 29:5033–5046CrossRefGoogle Scholar
  5. 5.
    Minerick AR (2008) The rapidly growing field of micro and nanotechnology to measure living cells. AIChE J 54(9):2230–2237CrossRefGoogle Scholar
  6. 6.
    Minerick AR (2008) DC dielectrophoresis in lab-on-a-chip devices. In: Li D (ed) Encyclopedia of micro- and nanofluidics. Springer, BerlinGoogle Scholar
  7. 7.
    Keshavamurthy SS, Leonard KM, Burgess SC, Minerick AR (2008) Direct current dielectrophoretic characterization of erythrocytes: positive ABO blood types. In: NSTI-Nanotech, Boston, MA, 1–5 June 2008, pp 401–404Google Scholar
  8. 8.
    K-i O, Tachikawa K, Manz A (2008) Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis 29:4443–4453CrossRefGoogle Scholar
  9. 9.
    Walt DR (2005) Miniature analytical methods for medical diagnostics. Science 308:217–219CrossRefGoogle Scholar
  10. 10.
    Yu L, Huang H, Dong X, Wu D, Qin J, Lin B (2008) Simple, fast and high-throughput single-cell analysis on PDMS microfluidic chips. Electrophoresis 29:5055–5060Google Scholar
  11. 11.
    Kua CH, Lam YC, Yang C, Youcef-Toumi K (2005) Review of bio-particle manipulation using dielectrophoresis (Innovation in Manufacturing Systems and Technology collection, Singapore-MIT Alliance community). DSpace, MIT, CambridgeGoogle Scholar
  12. 12.
    Stone HA, Kim S (2001) Microfluidics: basic issues, applications, and challenges. AlChE J 47(6):1250–1254Google Scholar
  13. 13.
    Saliterman SS (2006) Fundamentals of biomems and medical microdevices. SPIE, BellinghamGoogle Scholar
  14. 14.
    Kirby BJ (2010) Micro- and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press, CambridgeGoogle Scholar
  15. 15.
    Pohl HA (1978) Dielectrophoresis the behavior of neutral matter in nonuniform electric fields. Cambridge University Press, CambridgeGoogle Scholar
  16. 16.
    Minerick AR, Zhou R, Takhistov P, Chang H-C (2003) Manipulation and characterization of red blood cells with alternating current fields in microdevices. Electrophoresis 24:3703–3717CrossRefGoogle Scholar
  17. 17.
    Cheng I-F, Chang H-C, Hou D, Chang H-C (2007) An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. Biomicrofluidics 1(021503):1–15Google Scholar
  18. 18.
    Chou C-F, Tegenfeldt JO, Bakajin O, Chan SS, Cox EC, Darnton N, Duke T, Austin RH (2002) Electrodeless dielectrophoresis of single- and double-stranded DNA. Biophys J 83(4):2170–2179CrossRefGoogle Scholar
  19. 19.
    Gencoglu A, Minerick AR (2009) Chemical and morphological changes on platinum microelectrode surfaces in AC and DC fields with biological buffer solutions. Lab Chip 9:1866–1873Google Scholar
  20. 20.
    Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2003) High throughput electrodeless dielectrophoresis of viruses in polymeric microdevices. In: 7th lnt Conf on Miniaturized Chemical and Biochemical Analysis Systems, Squaw Valley, CA, USA, 5–9 Oct 2003, pp 607–610Google Scholar
  21. 21.
    Masuda S, Washizu M, Nanba T (1989) Novel method of cell fusion in field constriction area in fluid integrated circuit. IEEE Trans Ind Appl 25:732–737CrossRefGoogle Scholar
  22. 22.
    Lee SW, Yang SD, Kim YW, Kim YK, Lee SH (1994) Micromachined cell handling devices. In: 16th Annu Int IEEE Conf Medicine and Biology Society, Baltimore, MD, USA, 3–6 Nov 1994, pp 1019–1020Google Scholar
  23. 23.
    Lapizco-Encinas BH, Davalos RV, Simmons BA, Cummings EB, Fintschenko Y (2005) An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water. J Microbiol Meth 62:317–326CrossRefGoogle Scholar
  24. 24.
    Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004) Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal Chem 76(6):1571–1579CrossRefGoogle Scholar
  25. 25.
    Kang KH, Kang Y, Xuan X, Li D (2006) Continuous separation of microparticles by size with direct current-dielectrophoresis. Electrophoresis 27:694–702CrossRefGoogle Scholar
  26. 26.
    Cummings EB, Singh AK (2003) Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. Anal Chem 75:4724–4731CrossRefGoogle Scholar
  27. 27.
    Mela P, Avd B, Fintschenk Y, Cummings EB, Simmons BA, Kirby BJ (2005) The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices. Electrophoresis 26:1792–1799CrossRefGoogle Scholar
  28. 28.
    Lapizco-Encinas BH, Rito-Palomares M (2007) Dielectrophoresis for the manipulation of nanobioparticles. Electrophoresis 28:4521–4538CrossRefGoogle Scholar
  29. 29.
    Lapizco-Encinas BH, Ozuna-Chacon S, Rito-Palomares M (2008) Protein manipulation with insulator-based dielectrophoresis and direct current electric fields. J Chromatogr A 1206(1):45–51. doi:10.1016/j.chroma.2008.05.077 CrossRefGoogle Scholar
  30. 30.
    Gallo-Villanueva RC, Rodriguez-Lopez CE, Diaz-de-la-Garza RI, Reyes-Betanzo C, Lapizco-Encinas BH (2009) DNA manipulation by means of insulator based dielectrophoresis employing direct current electric fields. Electrophoresis 30:4195–4205CrossRefGoogle Scholar
  31. 31.
    Baylon-Cardiel JL, Lapizco-Encinas BH, Reyes-Betanzo C, Chavez-Santoscoy AV, Martinez-Chapa SO (2009) Prediction of trapping zones in an insulator-based dielectrophoretic device. Lab Chip 9:2896–2901CrossRefGoogle Scholar
  32. 32.
    Moncada-Hernández H, Lapizco-Encinas BH (2010) Simultaneous concentration and separation of microorganisms: insulator-based dielectrophoretic approach. Anal Bioanal Chem 396:1805–1816CrossRefGoogle Scholar
  33. 33.
    Thwar PK, Linderman JJ, Burns MA (2007) Electrodeless direct current dielectrophoresis using reconfigurable field-shaping oil barriers. Electrophoresis 28:4572–4581CrossRefGoogle Scholar
  34. 34.
    Kang Y, Li D, Kalams SA, Eid JE (2008) DC-dielectrophoretic separation of biological cells by size. Biomed Microdevices 10(2):243–249Google Scholar
  35. 35.
    Zhang L, Tatar F, Turmezei P, Bastemeijer J, Mollinger JR, Piciu O, Bossche A (2006) Continuous electrodeless dielectrophoretic separation in a circular channel. J Phys 34:527–532Google Scholar
  36. 36.
    Ozuna-Chacón S, Lapizco-Encinas BH, Rito-Palomares M, Martínez-Chapa SO, Reyes-Betanzo C (2008) Performance characterization of an insulator-based dielectrophoretic microdevice. Electrophoresis 29:3115–3122CrossRefGoogle Scholar
  37. 37.
    Barrett LM, Skulan AJ, Singh AK, Cummings EB, Fiechtner GJ (2005) Dielectrophoretic manipulation of particles and cells using insulating ridges in faceted prism microchannels. Anal Chem 77(21):6798–6804CrossRefGoogle Scholar
  38. 38.
    Golan S, Elata D, Orenstein M, Dinnar U (2006) Floating electrode dielectrophoresis. Electrophoresis 27:4919–4926CrossRefGoogle Scholar
  39. 39.
    Kang Y, Cetin B, Wu Z, Li D (2009) Continuous particle separation with localized AC-dielectrophoresis using embedded electrodes and an insulating hurdle. Electrochim Acta 54:1715–1720Google Scholar
  40. 40.
    Kang KH, Kang Y, Xuan X, Li D (2006) Effects of DC-dielectrophoretic force on particle trajectories in microchannels. J Appl Phys 99(6):064702–064708Google Scholar
  41. 41.
    Hawkins BG, Smith AE, Syed YA, Kirby BJ (2007) Continuous-flow particle separation by 3D insulative dielectrophoresis using coherently shaped, DC-biased, AC electric fields. Anal Chem 79(19):7291–7300Google Scholar
  42. 42.
    Zhu J, Xuan X (2009) Dielectrophoretic focusing of particles in a microchannel constriction using DC-biased AC electric fields. Electrophoresis 30:2668–2675Google Scholar
  43. 43.
    Barbulovic-Nad I, Xuan X, Lee JSH, Li D (2006) DC-dielectrophoretic separation of microparticles using an oil droplet obstacle. Lab Chip 6:274–279Google Scholar
  44. 44.
    Chou C-F, Zenhausern F (2003) Electrodeless dielectrophoresis for micro total analysis systems. IEEE Eng Med Biol Mag 22:62–67Google Scholar
  45. 45.
    Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004) Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis 25(10–11):1695–1704. doi:10.1002/elps.200405899 CrossRefGoogle Scholar
  46. 46.
    Sabounchi P, Morales AM, Ponce P, Lee LP, Simmons BA, Davalos RV (2008) Sample concentration and impedance detection on a microfluidic polymer chip. Biomed Microdevices 10(5):661–670. doi:10.1007/s10544-008-9177-4 CrossRefGoogle Scholar
  47. 47.
    Hsiao F-B, Hsu H-J, Chen H-Y, Hsu H-L (2007) The simulation study of bio-particle trapping with electrodeless dielectrophoresis. In: Proc 2nd IEEE Int Conf on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand, 16–19 Jan 2007Google Scholar
  48. 48.
    Hsiao F-B, Jen C-P, Chen H-Y, Hsu H-L, Lee Y-C, Chuang C-H, Wang C-H (2008) The experimental studies of bio-particle trapping using electrodeless dielectrophoresis. In: Proc 3rd IEEE Int Conf on Nano/Micro Engineered and Molecular Systems, Sanya, China, 6–9 Jan 2008Google Scholar
  49. 49.
    Lewpiriyawong N, Yang C, Lam YC (2008) Dielectrophoretic manipulation of particles in a modified microfluidic H filter with multi-insulating blocks. Biomicrofluidics 2:034105Google Scholar
  50. 50.
    Chen KP, Pacheco JR, Hayes MA, Staton SJR (2009) Insulator-based dielectrophoretic separation of small particles in a sawtooth channel. Electrophoresis 30:1441–1448CrossRefGoogle Scholar
  51. 51.
    Pysher MD, Hayes MA (2007) Electrophoretic and dielectrophoretic field gradient technique for separating bioparticles. Anal Chem 79(12):4552–4557. doi:10.1021/Ac070534j CrossRefGoogle Scholar
  52. 52.
    Jen C-P, Huang Y-H, Chen T-W (2008) Cell trapping utilizing insulator-based dielectrophoresis in the open-top microchannels. In: Dans Symp on Design, Test, Integration and Packaging of MEMS/MOEMS, Nice, France, 9–11 April 2008Google Scholar
  53. 53.
    Jen C-P, Chen T-W (2009) Trapping of cells by insulator-based dielectrophoresis using open-top microstructures. Microsyst Technol 15:1141–1148CrossRefGoogle Scholar
  54. 54.
    Zhang L, Bastemeijer J, Mollinger J, Bossche A (2008) Continuous dielectrophoretic separation in the iterative curves using DC-biased AC electric fields. In: Proc 3rd IEEE Int Conf on Nano/Micro Engineered and Molecular Systems, Sanya, China, 6–9 Jan 2008Google Scholar
  55. 55.
    Zhu J, Tzeng T-RJ HuG, Xuan X (2009) DC dielectrophoretic focusing of particles in a serpentine microchannel. Microfluid Nanofluid 7:751–756Google Scholar
  56. 56.
    Cho Y-K, Kim S, Lee K, Park C, Lee J-G, Ko C (2009) Bacteria concentration using a membrane type insulator-based dielectrophoresis in a plastic chip. Electrophoresis 30:3153–3159CrossRefGoogle Scholar
  57. 57.
    Martínez-López JI, Moncada-Hernández H, Baylon-Cardiel JL, Martínez-Chapa SO, Rito-Palomares M, Lapizco-Encinas BH (2009) Characterization of electrokinetic mobility of microparticles in order to improve dielectrophoretic concentration. Anal Bioanal Chem 394:293–302CrossRefGoogle Scholar
  58. 58.
    Sabounchi P, Huber DE, Kanouff MP, Harris AE, Simmons BA (2008) Joule heating effects on insulator based dielectrophoresis. In: 12th Int Conf on Miniaturized Systems for Chemistry and Life Sciences, San Diego, CA, USA, 12–16 Oct 2008Google Scholar
  59. 59.
    Chen D, Du H, Tay CY (2010) Rapid concentration of nanoparticles with DC dielectrophoresis in focused electric fields. Nano Res Lett 5:55–60Google Scholar
  60. 60.
    Ai Y, Joo SW, Jiang Y, Xuan X, Qian S (2009) Transient electrophoretic motion of a charged particle through a converging–diverging microchannel: effect of direct current-dielectrophoretic force. Electrophoresis 30:2499–2506CrossRefGoogle Scholar
  61. 61.
    Dhopeshwarkar R, Hlushkou D, Nguyen M, Tallarek U, Crooks RM (2008) Electrokinetics in microfluidic channels containing a floating electrode. J Am Chem Soc 130:10480–10481CrossRefGoogle Scholar
  62. 62.
    Golan S, Elata D, Dinnar U (2008) Hybrid dielectrophoresis devices that employ electrically floating electrodes. Sens Actuators A 142:138–146CrossRefGoogle Scholar
  63. 63.
    Shafiee H, Caldwell JL, Sano MB, Davalos RV (2009) Contactless dielectrophoresis: a new technique for cell manipulation. Biomed Microdevices 11:997–1006CrossRefGoogle Scholar
  64. 64.
    Shafiee H, Sano MB, Henslee EA, Caldwell JL, Davalos RV (2010) Selective isolation of live/dead cells using contactless dielectrophoresis (CDEP). Lab Chip 10:438–445Google Scholar
  65. 65.
    Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984CrossRefGoogle Scholar
  66. 66.
    Becker H, Gartner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21:12–26CrossRefGoogle Scholar
  67. 67.
    Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390:89–111CrossRefGoogle Scholar
  68. 68.
    McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40CrossRefGoogle Scholar
  69. 69.
    Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184Google Scholar
  70. 70.
    Davalos RV, McGraw GJ, Wallow TI, Morales AM, Krafcik KL, Fintschenko Y, Cummings EB, Simmons BA (2008) Performance impact of dynamic surface coatings on polymeric insulator-based dielectrophoretic particle separators. Anal Bioanal Chem 390(3):847–855. doi:10.1007/s00216-007-1426-5 CrossRefGoogle Scholar
  71. 71.
    Frienda J, Yeo L (2010) Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 4(026502):1–5. doi:10.1063/1.3259624 Google Scholar
  72. 72.
    Freeman D, Gray M, Aranyosi A (2007) Manufacturing a PDMS microfluidic device via a silicon wafer master. Harvard-MIT Division of Health Sciences and Technology. http://umech.mit.edu/HST410/devicefab.php. Accessed Oct 2010
  73. 73.
    Kirby BJ, Hasselbrink Jr EFH (2004) Zeta potential of microfluidic substrates: 2. Data for polymers. Electrophoresis 25:203–213Google Scholar
  74. 74.
    Berdichevsky Y, Khandurina J, Guttman A, Lo Y-H (2004) UV/ozone modification of poly(dimethylsiloxane) microfluidic channels. Sens Actuators B Chem 97:402–408Google Scholar
  75. 75.
    Chen L, Ren J, Bi R, Chen D (2004) Ultraviolet sealing and poly(dimethylacrylamide) modification for poly(dimethylsiloxane)/glass microchips. Electrophoresis 25:914–921CrossRefGoogle Scholar
  76. 76.
    Kelly RT, Pan T, Woolley AT (2005) Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips. Anal Chem 77(11):3536–3541CrossRefGoogle Scholar
  77. 77.
    Wu H, Huang B, Zare RN (2005) Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding. Lab Chip 5:1393–1398CrossRefGoogle Scholar
  78. 78.
    Hong SM, Kim SH, Kim JH, Hwang HI (2006) Hydrophilic surface modification of PDMS using atmospheric RF plasma. J Phys 34:656–661Google Scholar
  79. 79.
    Bhattacharya S, Datta A, Berg JM, Gangopadhyay S (2005) Studies on surface wettability of poly(dimethyl)siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J Microelectromech Syst 14(3):590–597Google Scholar
  80. 80.
    Badal MY, Wong M, Chiem N, Salimi-Moosavi H, Harrison DJ (2002) Protein separation and surfactant control of electroosmotic flow in poly(dimethylsiloxane)-coated capillaries and microchips. J Chromatogr A 947:277–286CrossRefGoogle Scholar
  81. 81.
    García CD, Dressen BM, Henderson A, Henry CS (2005) Comparison of surfactants for dynamic surface modification of poly(dimethylsiloxane) microchips. Electrophoresis 26:703–709CrossRefGoogle Scholar
  82. 82.
    Wang A-J, Xu J-J, Chen H-Y (2006) Nonionic surfactant dynamic coating of poly(dimethylsiloxane) channel surface for microchip electrophoresis of amino acids. Anal Chim Acta 569:188–194CrossRefGoogle Scholar
  83. 83.
    Liu Y, Fanguy JC, Bledsoe JM, Henry CS (2000) Dynamic coating using polyelectrolyte multilayers for chemical control of electroosmotic flow in capillary electrophoresis microchips. Anal Chem 72:5939–5944CrossRefGoogle Scholar
  84. 84.
    Abate AR, Lee D, Do T, Holtze C, Weitz DA (2008) Glass coating for PDMS microfluidic channels by sol–gel methods. Lab Chip 8:516–518Google Scholar
  85. 85.
    Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8(1):425–454CrossRefGoogle Scholar
  86. 86.
    Xuan X, Raghibizadeh S, Li D (2006) Wall effects on electrophoretic motion of spherical polystyrene particles in a rectangular poly(dimethylsiloxane) microchannel. J Colloid Interface Sci 296:743–748CrossRefGoogle Scholar
  87. 87.
    Xuan X, Xu B, Sinton D, Li D (2004) Electroosmotic flow with Joule heating effects. Lab Chip 4:230–236Google Scholar
  88. 88.
    Huang B, Kim S, Wu H, Zare RN (2007) Use of a mixture of n-dodecyl-β-D-maltoside and sodium dodecyl sulfate in poly(dimethylsiloxane) microchips to suppress adhesion and promote separation of proteins. Anal Chem 79:9145–9149Google Scholar
  89. 89.
    Zhu J, Tzeng T-RJ, Xuan X (2010) Continuous dielectrophoretic separation of particles in a spiral microchannel. Electrophoresis 31:1382–1388CrossRefGoogle Scholar
  90. 90.
    Zhu J, Xuan X (2009) Particle electrophoresis and dielectrophoresis in curved microchannels. J Colloid Interface Sci 340:285–290CrossRefGoogle Scholar
  91. 91.
    Ai Y, Qian S, Liu S, Joo SW (2010) Dielectrophoretic choking phenomenon in a converging–diverging microchannel. Biomicrofluidics 4:013201Google Scholar
  92. 92.
    Gray DS, Tan JL, Voldman J, Chen CS (2004) Dielectrophoretic registration of living cells to a microelectrode array. Biosens Bioelectron 19:1765–1774CrossRefGoogle Scholar
  93. 93.
    Hölzel R, Calander N, Chiragwandi Z, Willander M, Bier FF (2005) Trapping single molecules by dielectrophoresis. Phys Rev Lett 95(128102):1–4Google Scholar
  94. 94.
    Andersson H, Avd B (2004) Microtechnologies and nanotechnologies for single-cell analysis. Curr Opin Biotechnol 15:44–49CrossRefGoogle Scholar
  95. 95.
    Talary MS, Mills KI, Hoy T, Burnett AK, Pethig R (1995) Dielectrophoretic separation and enrichment of CD34+ cell subpopulation from bone marrow and peripheral blood stem cells. Med Biol Eng Comput 33(2):235–237Google Scholar
  96. 96.
    Pethig R, Markx GH (1997) Applications of dielectrophoresis in biotechnology. Trends Biotechnol 15:426–432CrossRefGoogle Scholar
  97. 97.
    Fiedler S, Shirley SG, Schnelle T, Fuhr G (1998) Dielectrophoretic sorting of particles and cells in a microsystem. Anal Chem 70:1909–1915CrossRefGoogle Scholar
  98. 98.
    Xu C, Wang Y, Cao M, Lu Z (1999) Dielectrophoresis of human red cells in microchips. Electrophoresis 20:1829–1831CrossRefGoogle Scholar
  99. 99.
    Huang Y, Joo S, Duhon M, Heller M, Wallace B, Xu X (2002) Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Anal Chem 74:3362–3371CrossRefGoogle Scholar
  100. 100.
    Yang F, Yang X, Jiang H, Bulkhaults P, Wood P, Hrushesky W, Wang G (2010) Dielectrophoretic separation of colorectal cancer cells. Biomicrofluidics 4(013204):1–13Google Scholar
  101. 101.
    Pethig R, Menachery A, Pells S, Sousa PD (2010) Dielectrophoresis: a review of applications for stem cell research. J Biomed Biotechnol 2010:1–7. doi:10.1155/2010/182581 CrossRefGoogle Scholar
  102. 102.
    Pethig R, Lee RS, Talary MS (2004) Cell physiometry tools based on dielectrophoresis. J Assoc Lab Automat 9(5):324–330CrossRefGoogle Scholar
  103. 103.
    Kang JH, Park J-K (2005) Cell separation technology. Asia Pacific Biotech News 9(21):1135–1146Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Soumya K. Srivastava
    • 1
    • 2
  • Aytug Gencoglu
    • 3
  • Adrienne R. Minerick
    • 3
  1. 1.Dave C. Swalm School of Chemical EngineeringMississippi State UniversityStarkvilleUSA
  2. 2.Gene and Linda Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanUSA
  3. 3.Department of Chemical EngineeringMichigan Technological UniversityHoughtonUSA

Personalised recommendations