Analytical and Bioanalytical Chemistry

, Volume 399, Issue 1, pp 3–27 | Cite as

Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives

  • Megan A. Hahn
  • Amit K. Singh
  • Parvesh Sharma
  • Scott C. Brown
  • Brij M. Moudgil


Nanoparticle-based contrast agents are quickly becoming valuable and potentially transformative tools for enhancing medical diagnostics for a wide range of in-vivo imaging modalities. Compared with conventional molecular-scale contrast agents, nanoparticles (NPs) promise improved abilities for in-vivo detection and potentially enhanced targeting efficiencies through longer engineered circulation times, designed clearance pathways, and multimeric binding capacities. However, NP contrast agents are not without issues. Difficulties in minimizing batch-to-batch variations and problems with identifying and characterizing key physicochemical properties that define the in-vivo fate and transport of NPs are significant barriers to the introduction of new NP materials as clinical contrast agents. This manuscript reviews the development and application of nanoparticles and their future potential to advance current and emerging clinical bioimaging techniques. A focus is placed on the application of solid, phase-separated materials, for example metals and metal oxides, and their specific application as contrast agents for in-vivo near-infrared fluorescence (NIRF) imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), ultrasound (US), and photoacoustic imaging (PAI). Clinical and preclinical applications of NPs are identified for a broad spectrum of imaging applications, with commentaries on the future promise of these materials. Emerging technologies, for example multifunctional and theranostic NPs, and their potential for clinical advances are also discussed.


Nanoparticles In-vivo imaging Clinical Characterization Multifunctional Theranostic 



This work was supported by the National Science Foundation’s Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET) grant 0853707, the National Science Foundation’s Nanoscale Interdisciplinary Research Team (NIRT) Engineering Education and Center (EEC) grant 0506560, the Center for Nano-Bio Sensors (CNBS) at the University of Florida, and the Bankhead Coley Florida Biomedical Research Program.


  1. 1.
    Tallury P, Payton K, Santra S (2008) Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications. Nanomed 3(4):579–592Google Scholar
  2. 2.
    Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580Google Scholar
  3. 3.
    Debbage P, Jaschke W (2008) Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochem Cell Biol 130:845–875Google Scholar
  4. 4.
    Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7(8):603–614Google Scholar
  5. 5.
    Altınoğlu Eİ, Adair JH (2010) Near infrared imaging with nanoparticles. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 2(5):461–477Google Scholar
  6. 6.
    He X, Wang K, Cheng Z (2010) In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 2(4):349–366Google Scholar
  7. 7.
    So MK, Xu C, Loening AM, Gambhir SS, Rao J (2006) Self-illuminating quantum dot conjugates for in-vivo imaging. Nat Biotechnol 22:339–343Google Scholar
  8. 8.
    Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22(1):93–97Google Scholar
  9. 9.
    Yu X-F, Chen L-D, Li M, Xie M-Y, Zhou L, Li Y, Wang Q-Q (2008) Highly efficient fluorescence of NdF3/SiO2 core/shell nanoparticles and the applications for in vivo NIR detection. Adv Mater 20:4118–4123Google Scholar
  10. 10.
    Hilderbrand SA, Shao F, Salthouse C, Mahmood U, Weissleder R (2009) Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem Commun 28:4188–4190Google Scholar
  11. 11.
    Chatterjee DK, Rufaihah AJ, Zhang Y (2008) Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29:937–943Google Scholar
  12. 12.
    Wang L, Zhang Y, Zhu Y (2010) One-pot synthesis and strong near-infrared upconversion luminescence of poly(acrylic acid)-functionalized YF3:Yb3+/Er3+ nanocrystals. Nano Res 3:317–325Google Scholar
  13. 13.
    Venkatachalam N, Okumura Y, Soga K, Fukuda R, Tsuji T (2009) Bioimaging of M1 cells using ceramic nanophosphors: synthesis and toxicity assay of Y2O3 nanoparticles. J Phys Conf Ser 191:012002Google Scholar
  14. 14.
    Bachmann PK, Hummel H, Jüstel T, Merikhi J, Ronda CR, Weiler V (2008) Near-infrared luminescent nanomaterials for in-vivo optical imaging. J Nanophotonics 2:021920Google Scholar
  15. 15.
    Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai H (2009) A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol 4:773–780Google Scholar
  16. 16.
    Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie S-Y (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757Google Scholar
  17. 17.
    Yang ST, Wang X, Wang HF, Lu FS, Luo PJG, Cao L, Meziani MJ, Liu JH, Liu YF, Chen M, Huang YP, Sun YP (2009) Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C 113(42):18110–18114Google Scholar
  18. 18.
    Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie S-Y, Sun Y-P (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129(37):11318–11319Google Scholar
  19. 19.
    Yang S-T, Cao L, Luo PG, Lu F, Wang X, Wang H, Meziani MJ, Liu Y, Qi G, Sun Y-P (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131:11308–11309Google Scholar
  20. 20.
    Barnard AS (2009) Diamond standard in diagnostics: nanodiamond biolabels make their mark. Analyst 134:1751–1764Google Scholar
  21. 21.
    Altınoğlu Eİ, Russin TJ, Kaiser JM, Barth BM, Eklund PC, Kester M, Adair JH (2008) Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in-vivo imaging of human breast cancer. ACS Nano 2(10):2075–2084Google Scholar
  22. 22.
    Park J-H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336Google Scholar
  23. 23.
    Kircher MF, Weissleder R, Josephson L (2004) A dual fluorochrome probe for imaging proteases. Bioconjug Chem 15(2):242Google Scholar
  24. 24.
    Rao J, Dragulescu-Andrasi A, Yao H (2007) Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 18:17–25Google Scholar
  25. 25.
    Deliolanis NC, Dunham J, Wurdinger T, Figueiredo J-L, Tannous BA, Ntziachristos V (2009) In-vivo imaging of murine tumors using complete-angle projection fluorescence molecular tomography. J Biomed Opt 14(3):030509Google Scholar
  26. 26.
    Garofalakis A, Zacharakis G, Meyer H, Economou EN, Mamalaki C, Papamatheakis J, Kioussis D, Ntziachristos V, Ripoll J (2007) Three-dimensional in-vivo imaging of green fluorescent protein-expressing T cells in mice with noncontact fluorescence molecular tomography. Mol Imaging 6(2):96–107Google Scholar
  27. 27.
    Martin A, Aguirre J, Sarasa-Renedo A, Tsoukatou D, Garofalakis A, Meyer H, Mamalaki C, Ripoll J, Planas AM (2008) Imaging changes in lymphoid organs in vivo after brain ischemia with three-dimensional fluorescence molecular tomography in transgenic mice expressing green fluorescent protein in T lymphocytes. Mol Imaging 7(4):157–167Google Scholar
  28. 28.
    Khullar O, Frangioni JV, Grinstaff M, Colson YL (2009) Image-guided sentinel lymph node mapping and nanotechnology-based nodal treatment in lung cancer using invisible near-infrared fluorescent light. Seminars Thorac Cardiovasc Surg 21(4):309–315Google Scholar
  29. 29.
    Ravizzini G, Turkbey B, Barrett T, Kobayashi H, Choyke PL (2009) Nanoparticles in sentinel lymph node mapping. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 1:610–623Google Scholar
  30. 30.
    Na HB, Hyeon T (2009) Nanostructured t1MRI contrast agents. J Mater Chem 19(35):6267–6273Google Scholar
  31. 31.
    Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148Google Scholar
  32. 32.
    Corot C, Robert P, Idee JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Delivery Rev 58(14):1471–1504Google Scholar
  33. 33.
    Semelka RC, Helmberger TKG (2001) Contrast agents for MR imaging of the liver. Radiology 218(1):27–38Google Scholar
  34. 34.
    Jaffer FA, Libby P, Weissleder R (2006) Molecular and cellular imaging of atherosclerosis - emerging applications. J Am Coll Cardiol 47(7):1328–1338Google Scholar
  35. 35.
    Sosnovik DE, Nahrendorf M, Weissleder R (2008) Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res Cardiol 103(2):122–130Google Scholar
  36. 36.
    Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452(7187):580–589Google Scholar
  37. 37.
    Jaffer FA, Libby P, Weissleder R (2007) Molecular imaging of cardiovascular disease. Circulation 116(9):1052–1061Google Scholar
  38. 38.
    Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244Google Scholar
  39. 39.
    Cunningham CH, Arai T, Yang PC, McConnell MV, Pauly JM, Conolly SM (2005) Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 53(5):999–1005Google Scholar
  40. 40.
    Suzuki Y, Cunningham CH, Noguchi KI, Chen IY, Weissman IL, Yeung AC, Robbins RC, Yang PC (2008) In vivo serial evaluation of superparamagnetic iron-oxide labeled stem cells by off-resonance positive contrast. Magn Reson Med 60(6):1269–1275Google Scholar
  41. 41.
    Senpan A, Caruthers SD, Rhee I, Mauro NA, Pan DPJ, Hu G, Scott MJ, Fuhrhop RW, Gaffney PJ, Wickline SA, Lanzat GM (2009) Conquering the dark side: colloidal iron oxide nanoparticles. ACS Nano 3(12):3917–3926Google Scholar
  42. 42.
    Alric C, Taleb J, Le Duc G, Mandon C, Billotey C, Le Meur-Herland A, Brochard T, Vocanson F, Janier M, Perriat P, Roux S, Tillement O (2008) Gadolinium chelate coated gold nanoparticles as contrast agents for both x-ray computed tomography and magnetic resonance imaging. J Am Chem Soc 130(18):5908–5915Google Scholar
  43. 43.
    Terreno E, Castelli DD, Viale A, Aime S (2010) Challenges for molecular magnetic resonance imaging. Chem Rev 110(5):3019–3042Google Scholar
  44. 44.
    Manus LM, Mastarone DJ, Waters EA, Zhang XQ, Schultz-Sikma EA, MacRenaris KW, Ho D, Meade TJ (2010) Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Lett 10(2):484–489Google Scholar
  45. 45.
    Taylor KML, Kim JS, Rieter WJ, An H, Lin WL, Lin WB (2008) Mesoporous silica nanospheres as highly efficient MRI contrast agents. J Am Chem Soc 130(7):2154–2155Google Scholar
  46. 46.
    Shin JM, Anisur RM, Ko MK, Im GH, Lee JH, Lee IS (2009) Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angew Chem Int Ed 48(2):321–324Google Scholar
  47. 47.
    Viswanathan S, Kovacs Z, Green KN, Ratnakar SJ, Sherry AD (2010) Alternatives to gadolinium-based metal chelates for magnetic resonance imaging. Chem Rev 110(5):2960–3018Google Scholar
  48. 48.
    Bouchiat MA, Carver TR, Varnum CM (1960) Nuclear polarization in He-3 gas induced by optical pumping and dipolar exchange. Phys Rev Lett 5(8):373–375Google Scholar
  49. 49.
    Oros AM, Shah NJ (2004) Hyperpolarized xenon in NMR and MRI. Phys Med Biol 49(20):R105–R153Google Scholar
  50. 50.
    Sherry AD, Woods M (2008) Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Ann Rev Biomed Eng 10:391–411Google Scholar
  51. 51.
    Phelps ME (2000) Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA 97(16):9226–9233Google Scholar
  52. 52.
    Miller PW, Long NJ, Vilar R, Gee AD (2008) Synthesis of C-11, F-18, O-15, and N-13 radiolabels for positron emission tomography. Angew Chem Int Ed 47(47):8998–9033Google Scholar
  53. 53.
    Sioka C, Fotopoulos A, Kyritsis A (2010) Recent advances in PET imaging for evaluation of Parkinson’s disease. Eur J Nucl Med Mol Imaging 37(8):1594–1603Google Scholar
  54. 54.
    Jarzyna PA, Gianella A, Skajaa T, Knudsen G, Deddens LH, Cormode DP, Fayad ZA, Mulder WJM (2010) Multifunctional imaging nanoprobes. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 2:138–150Google Scholar
  55. 55.
    Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, Libby P, Swirski FK, Weissleder R (2008) Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117:379–387Google Scholar
  56. 56.
    Townsend DW (2001) A combined PET/CT scanner: the choices. J Nucl Med 42(3):533–534Google Scholar
  57. 57.
    Chung D, Kang K, Jeon Y, Kim Y, Alothman ZA, Ahmed AYH, Choi K, Aimajid AM, Piao J, Alothman AA, Quan B (2010) Fluorescent silica nanoparticle with radioactive tag and the detecting method of PET and fluorescent dual imaging using thereof. International Patent WO 2010/030120Google Scholar
  58. 58.
    Kumar R, Roy I, Ohulchanskky TY, Vathy LA, Bergey EJ, Sajjad M, Prasad PN (2010) In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 4(2):699–708Google Scholar
  59. 59.
    Chen K, Li Z-B, Wang H, Cai W, Chen X (2008) Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur J Nucl Med Mol Imaging 35:2235–2244Google Scholar
  60. 60.
    Xie J, Chen K, Huang J, Lee S, Wang J, Gao J, Li X (2010) PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 31:3016–3022Google Scholar
  61. 61.
    Strijkers GJ, Mulder WJM, van Tilborg GAF, Nicolay K (2007) MRI contrast agents: current status and future perspectives. Anticancer Agents Med Chem 7(3):291–305Google Scholar
  62. 62.
    Cherry SR, Louie AY, Jacobs RE (2008) The integration of positron emission tomography with magnetic resonance imaging. Proc IEEE 96(3):416–438Google Scholar
  63. 63.
    Schlemmer HPW, Pichler BJ, Schmand M, Burbar Z, Michel C, Ladebeck R, Jattke K, Townsend D, Nahmias C, Jacob PK, Heiss WD, Claussen CD (2008) Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248(3):1028–1035Google Scholar
  64. 64.
    Hong SY, Tobias G, Al-Jamal KT, Ballesteros B, Ali-Boucetta H, Lozano-Perez S, Nellist PD, Sim RB, Finucane C, Mather SJ, Green MLH, Kostarelos K, Davis BG (2010) Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat Mater 9:485–490Google Scholar
  65. 65.
    Seltzer SM, Berger MJ (1985) Bremsstrahlung spectra from electron interactions with screened atomic-nuclei and orbital electrons. Nucl Instrum Methods Phys Res Sect B 12(1):95–134Google Scholar
  66. 66.
    Carlsson GA (1985) Theoretical basis for dosimetry. In: Kase KR, Bajrngard BE, Attix FH (eds) The dosimetry of ionizing radiation, vol 1. Academic Press, Orlando, pp 1–75Google Scholar
  67. 67.
    Becker N, Liebermann D, Wesch H, Van Kaick G (2008) Mortality among Thorotrast-exposed patients and an unexposed comparison group in the German Thorotrast study. Eur J Cancer 44(9):1259–1268Google Scholar
  68. 68.
    de Vries A, Custers E, Lub J, van den Bosch S, Nicolay K, Grüll H Block-copolymer-stabilized iodinated emulsions for use as CT contrast agents. Biomaterials 31 (25):6537–6544Google Scholar
  69. 69.
    Kong WH, Lee WJ, Cui ZY, Bae KH, Park TG, Kim JH, Park K, Seo SW (2007) Nanoparticulate carrier containing water-insoluble iodinated oil as a multifunctional contrast agent for computed tomography imaging. Biomaterials 28(36):5555–5561Google Scholar
  70. 70.
    Elrod DB, Partha R, Danila D, Casscells SW, Conyers JL (2009) An iodinated liposomal computed tomographic contrast agent prepared from a diiodophosphatidylcholine lipid. Nanomedicine 5(1):42–45Google Scholar
  71. 71.
    Skajaa T, Cormode DP, Falk E, Mulder WJ, Fisher EA, Fayad ZA High-density lipoprotein-based contrast agents for multimodal imaging of atherosclerosis. Arteriosclerosis Thromb Vasc Biol 30 (2):169–176Google Scholar
  72. 72.
    Gazelle GS, Wolf GL, McIntire GL, Bacon ER, Na G, Halpern EF, Toner JL (1995) Hepatic imaging with iodinated nanoparticles: a comparison with iohexol in rabbits. Acad Radiol 2(8):700–704Google Scholar
  73. 73.
    McIntire GL, Bacon ER, Toner JL, Cornacoff JB, Losco PE, Illig KJ, Nikula KJ, Muggenburg BA, Ketai L (1998) Pulmonary delivery of nanoparticles of insoluble, iodinated CT x-ray contrast agents to lung draining lymph nodes in dogs. J Pharm Sci 87(11):1466–1470Google Scholar
  74. 74.
    Hyafil F, Cornily JC, Feig JE, Gordon R, Vucic E, Amirbekian V, Fisher EA, Fuster V, Feldman LJ, Fayad ZA (2007) Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med 13(5):636–641Google Scholar
  75. 75.
    Van Herck JL, De Meyer GRY, Martinet W, Salgado RA, Shivalkar B, De Mondt R, Van De Ven H, Ludwig A, Van Der Veken P, Van Vaeck L, Bult H, Herman AG, Vrints CJ (2010) Multi-slice computed tomography with N1177 identifies ruptured atherosclerotic plaques in rabbits. Basic Res Cardiol 105(1):51–59Google Scholar
  76. 76.
    Galperin A, Margel D, Baniel J, Dank G, Biton H, Margel S (2007) Radiopaque iodinated polymeric nanoparticles for x-ray imaging applications. Biomaterials 28(30):4461–4468Google Scholar
  77. 77.
    Aviv H, Bartling S, Kieslling F, Margel S (2009) Radiopaque iodinated copolymeric nanoparticles for x-ray imaging applications. Biomaterials 30(29):5610–5616Google Scholar
  78. 78.
    Ashokan A, Menon D, Nair S, Koyakutty M (2010) A molecular receptor targeted, hydroxyapatite nanocrystal based multi-modal contrast agent. Biomaterials 31(9):2606–2616Google Scholar
  79. 79.
    Jackson PA, Rahman WN, Wong CJ, Ackerly T, Geso M (2009) Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents. Eur J Radiol 75(1):104–109Google Scholar
  80. 80.
    Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging. J Am Chem Soc 129(24):7661–7665Google Scholar
  81. 81.
    Kojima C, Umeda Y, Ogawa M, Harada A, Magata Y, Kono K (2010) X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer. Nanotechnology 21(24):245104Google Scholar
  82. 82.
    Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8(12):4593–4596Google Scholar
  83. 83.
    Xiao M, Nyagilo J, Arora V, Kulkarni P, Xu DS, Sun XK, Dave DP (2010) Gold nanotags for combined multi-colored Raman spectroscopy and x-ray computed tomography. Nanotechnology 21(3):035101Google Scholar
  84. 84.
    Aydogan B, Li J, Rajh T, Chaudhary A, Chmura SJ, Pelizzari C, Wietholt C, Kurtoglu M, Redmond P (2010) AuNP-DG: Deoxyglucose-labeled gold nanoparticles as x-ray computed tomography contrast agents for cancer imaging. Mol Imaging Biol. doi: 10.1007/s11307-010-0299-8 Google Scholar
  85. 85.
    Boote E, Fent G, Kattumuri V, Casteel S, Katti K, Chanda N, Kannan R, Katti K, Churchill R (2010) Gold nanoparticle contrast in a phantom and juvenile swine: models for molecular imaging of human organs using x-ray computed tomography. Acad Radiol 17(4):410–417Google Scholar
  86. 86.
    Cai QY, Kim SH, Choi KS, Kim SY, Byun SJ, Kim KW, Park SH, Juhng SK, Yoon KH (2007) Colloidal gold nanoparticles as a blood-pool contrast agent for x-ray computed tomography in mice. Investig Radiol 42(12):797–806Google Scholar
  87. 87.
    Sun IC, Eun DK, Na JH, Lee S, Kim IJ, Youn IC, Ko CY, Kim HS, Lim D, Choi K, Messersmith PB, Park TG, Kim SY, Kwon IC, Kim K, Ahn CH (2009) Heparin-coated gold nanoparticles for liver-specific CT imaging. Chemistry 15(48):13341–13347Google Scholar
  88. 88.
    Park YS, Kasuya A, Dmytruk A, Yasuto N, Takeda M, Ohuchi N, Sato Y, Tohji K, Uo M, Watari F (2007) Concentrated colloids of silica-encapsulated gold nanoparticles: colloidal stability, cytotoxicity, and x-ray absorption. J Nanosci Nanotechnol 7(8):2690–2695Google Scholar
  89. 89.
    Park YS, Liz-Marzan LM, Kasuya A, Kobayashi Y, Nagao D, Konno M, Mamykin S, Dmytruk A, Takeda M, Ohuchi N (2006) X-ray absorption of gold nanoparticles with thin silica shell. J Nanosci Nanotechnol 6(11):3503–3506Google Scholar
  90. 90.
    Guo R, Wang H, Peng C, Shen MW, Pan MJ, Cao XY, Zhang GX, Shi XY (2010) X-ray attenuation property of dendrimer-entrapped gold nanoparticles. J Phys Chem C 114(1):50–56Google Scholar
  91. 91.
    Lijowski M, Caruthers S, Hu G, Zhang HY, Scott MJ, Williams T, Erpelding T, Schmieder AH, Kiefer G, Gulyas G, Athey PS, Gaffney PJ, Wickline SA, Lanza GM (2009) High sensitivity high-resolution SPECT-CT/MR molecular imaging of angiogenesis in the Vx2 model. Investig Radiol 44(1):15–22Google Scholar
  92. 92.
    Xu CJ, Tung GA, Sun SH (2008) Size and concentration effect of gold nanoparticles on x-ray attenuation as measured on computed tomography. Chem Mater 20(13):4167–4169Google Scholar
  93. 93.
    Garnica-Garza HM (2009) Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors. Phys Med Biol 54(18):5411–5425Google Scholar
  94. 94.
    McMahon SJ, Mendenhall MH, Jain S, Currell F (2008) Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticles. Phys Med Biol 53(20):5635–5651Google Scholar
  95. 95.
    Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R (2006) An x-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5(2):118–122Google Scholar
  96. 96.
    Ajeesh M, Francis BF, Annie J, Varma PRH (2010) Nano iron oxide-hydroxyapatite composite ceramics with enhanced radioopacity. J Mater Sci Mater Med 21(5):1427–1434Google Scholar
  97. 97.
    Santra S, Bagwe RP, Dutta D, Stanley JT, Walter GA, Tan W, Moudgil BM, Mericle RA (2005) Synthesis and characterization of fluorescent, radio-opaque, and paramagnetic silica nanoparticles for multimodal bioimaging applications. Adv Mater 17(18):2165–2169Google Scholar
  98. 98.
    Dayton PA, Rychak JJ (2007) Molecular ultrasound imaging using microbubble contrast agents. Frontiers Biosci 12:5124–5142Google Scholar
  99. 99.
    Gessner R, Dayton PA (2010) Advances in molecular imaging with ultrasound. Mol Imaging 9(3):117–127Google Scholar
  100. 100.
    Lanza GM, Abendschein DR, Hall CS, Scott MJ, Scherrer DE, Houseman A, Miller JG, Wickline SA (2000) In vivo molecular imaging of stretch-induced tissue factor in carotid arteries with ligand-targeted nanoparticles. J Am Soc Echocardiogr 13(6):608–614Google Scholar
  101. 101.
    Oeffinger BE, Wheatley MA (2004) Development and characterization of a nano-scale contrast agent. Ultrasonics 42(1–9):343–347Google Scholar
  102. 102.
    Cavalli R, Bisazza A, Giustetto P, Civra A, Lembo D, Trotta G, Guiot C, Trotta M (2009) Preparation and characterization of dextran nanobubbles for oxygen delivery. Int J Pharm 381(2):160–165Google Scholar
  103. 103.
    Cavalli R, Bisazza A, Rolfo A, Balbis S, Madonnaripa D, Caniggia I, Guiot C (2009) Ultrasound-mediated oxygen delivery from chitosan nanobubbles. Int J Pharm 378(1–2):215–217Google Scholar
  104. 104.
    Hwang TL, Lin YK, Chi CH, Huang TH, Fang JY (2009) Development and evaluation of perfluorocarbon nanobubbles for apomorphine delivery. J Pharm Sci 98(10):3735–3747Google Scholar
  105. 105.
    Rapoport N, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99(4):1095–1106Google Scholar
  106. 106.
    Hughes MS, Marsh JN, Hall CS, Fuhrhop RW, Lacy EK, Lanza GM, Wickline SA (2005) Acoustic characterization in whole blood and plasma of site-targeted nanoparticle ultrasound contrast agent for molecular imaging. J Acoust Soc Am 117(2):964–972Google Scholar
  107. 107.
    Mukdadi OM, Kim HB, Hertzberg J, Shandas R (2004) Numerical modeling of microbubble backscatter to optimize ultrasound particle image velocimetry imaging: initial studies. Ultrasonics 42(10):1111–1121Google Scholar
  108. 108.
    Liu J, Levine AL, Mattoon JS, Yamaguchi M, Lee RJ, Pan X, Rosol TJ (2006) Nanoparticles as image enhancing agents for ultrasonography. Phys Med Biol 51:2179–2189Google Scholar
  109. 109.
    Tachibana K, Feril LB, Ikeda-Dantsuji Y (2008) Sonodynamic therapy. Ultrasonics 48(4):253–259Google Scholar
  110. 110.
    Wang LV (2009) Multiscale photoacoustic microscopy and computed tomography. Nat Photonics 3(9):503–509Google Scholar
  111. 111.
    Xu MH, Wang LHV (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77(4):041101Google Scholar
  112. 112.
    Yang XM, Stein EW, Ashkenazi S, Wang LHV (2009) Nanoparticles for photoacoustic imaging. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 1(4):360–368Google Scholar
  113. 113.
    Wang LV, H-i Wu (2007) Biomedical optics: Principles and imaging. Wiley-Interscience, NJGoogle Scholar
  114. 114.
    Ermilov SA, Khamapirad T, Conjusteau A, Leonard MH, Lacewell R, Mehta K, Miller T, Oraevsky AA (2009) Laser optoacoustic imaging system for detection of breast cancer. J Biomed Opt 14(2):024007Google Scholar
  115. 115.
    Kruger RA, Reinecke DR, Kruger GA (1999) Thermoacoustic computed tomography-technical considerations. Med Phys 26(9):1832–1837Google Scholar
  116. 116.
    Kolkman RGM, Hondebrink E, Steenbergen W, van Leeuwen TG, de Mul FFM (2004) Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture. J Biomed Opt 9(6):1327–1335Google Scholar
  117. 117.
    Esenaliev RO, Karabutov AA, Oraevsky AA (1999) Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors. IEEE J Sel Top Quantum Electron 5(4):981–988Google Scholar
  118. 118.
    Oraevsky AA, Ermilov SA, Conjusteau A, Miller T, Gharieb RR, Lacewell R, Mehta K, Radulescu EG, Herzog D, Thompson S, Stein A, McCorvey M, Otto P, Khamapirad T (2007) Initial clinical evaluation of laser optoacoustic imaging system for diagnostic imaging of breast cancer. Breast Cancer Res Treat 106:S47Google Scholar
  119. 119.
    Siphanto RI, Thumma KK, Kolkman RGM, van Leeuwen TG, de Mul FFM, van Neck JW, van Adrichem LNA, Steenbergen W (2005) Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis. Opt Express 13(1):89–95Google Scholar
  120. 120.
    Wang XD, Xie XY, Ku GN, Wang LHV (2006) Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J Biomed Opt 11(2):024015Google Scholar
  121. 121.
    Song KH, Stein EW, Margenthaler JA, Wang LV (2008) Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model. J Biomed Opt 13(5):054033Google Scholar
  122. 122.
    Yao JJ, Maslov K, Hu S, Wang LHV (2009) Evans blue dye-enhanced capillary-resolution photoacoustic microscopy in vivo. J Biomed Opt 14(5):054049Google Scholar
  123. 123.
    Pramanik M, Swierczewska M, Green D, Sitharaman B, Wang LV (2009) Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent. J Biomed Opt 14(3):034018Google Scholar
  124. 124.
    Wang XD, Pang YJ, Ku G, Xie XY, Stoica G, Wang LHV (2003) Noninvasive laser-induced photoacoustic tomography for structural and functional in-vivo imaging of the brain. Nat Biotechnol 21(7):803–806Google Scholar
  125. 125.
    Zhang Q, Iwakuma N, Sharma P, Moudgil BM, Wu C, McNeill J, Jiang H, Grobmyer SR (2009) Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography. Nanotechnology 20:395102Google Scholar
  126. 126.
    Agarwal A, Huang SW, O’Donnell M, Day KC, Day M, Kotov N, Ashkenazi S (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 102(6):064701Google Scholar
  127. 127.
    Chen YS, Frey W, Kim S, Homan K, Kruizinga P, Sokolov K, Emelianov S (2010) Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express 18(9):8867–8877Google Scholar
  128. 128.
    Song KH, Kim CH, Cobley CM, Xia YN, Wang LV (2009) Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett 9(1):183–188Google Scholar
  129. 129.
    Mallidi S, Larson T, Tam J, Joshi PP, Karpiouk A, Sokolov K, Emelianov S (2009) Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett 9(8):2825–2831Google Scholar
  130. 130.
    Lu W, Huang Q, Geng KB, Wen XX, Zhou M, Guzatov D, Brecht P, Su R, Oraevsky A, Wang LV, Li C (2010) Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials 31(9):2617–2626Google Scholar
  131. 131.
    Li ML, Wang JC, Schwartz JA, Gill-Sharp KL, Stoica G, Wang LHV (2009) In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. J Biomed Opt 14(1):010507Google Scholar
  132. 132.
    Wang YW, Xie XY, Wang XD, Ku G, Gill KL, O’Neal DP, Stoica G, Wang LV (2004) Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett 4(9):1689–1692Google Scholar
  133. 133.
    Bouchard LS, Anwar MS, Liu GL, Hann B, Xie ZH, Gray JW, Wang XD, Pines A, Chen FF (2009) Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles. Proc Natl Acad Sci USA 106(11):4085–4089Google Scholar
  134. 134.
    Sharma P, Brown SC, Bengtsson N, Zhang Q, Walter GA, Grobmyer SR, Santra S, Jiang H, Scott EW, Moudgil BM (2008) Gold-speckled multimodal nanoparticles for noninvasive bioimaging. Chem Mater 20:6087–6094Google Scholar
  135. 135.
    Pan DPJ, Pramanik M, Senpan A, Ghosh S, Wickline SA, Wang LV, Lanza GM (2010) Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons. Biomaterials 31(14):4088–4093Google Scholar
  136. 136.
    Kalele S, Gosavi SW, Urban J, Kulkarni SK (2006) Nanoshell particles: synthesis, properties and applications. Curr Sci 91(8):1038–1052Google Scholar
  137. 137.
    Huang XH, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21(48):4880–4910Google Scholar
  138. 138.
    Ji XJ, Shao RP, Elliott AM, Stafford RJ, Esparza-Coss E, Bankson JA, Liang G, Luo ZP, Park K, Markert JT, Li C (2007) Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy. J Phys Chem C 111(17):6245–6251Google Scholar
  139. 139.
    O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176Google Scholar
  140. 140.
    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100(23):13549–13554Google Scholar
  141. 141.
    von Maltzahn G, Park JH, Agrawal A, Bandaru NK, Das SK, Sailor MJ, Bhatia SN (2009) Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 69(9):3892–3900Google Scholar
  142. 142.
    Eisler R (2003) Chrysotherapy: a synoptic review. Inflamm Res 52(12):487–501Google Scholar
  143. 143.
    Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41(12):1721–1730Google Scholar
  144. 144.
    Chen YS, Hung YC, Liau I, Huang GS (2009) Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett 4(8):858–864Google Scholar
  145. 145.
    Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782Google Scholar
  146. 146.
    Cole JR, Mirin NA, Knight MW, Goodrich GP, Halas NJ (2009) Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications. J Phys Chem C 113(28):12090–12094Google Scholar
  147. 147.
    Eck W, Craig G, Sigdel A, Ritter G, Old LJ, Tang L, Brennan MF, Allen PJ, Mason MD (2008) PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. ACS Nano 2(11):2263–2272Google Scholar
  148. 148.
    Huang WC, Tsai PJ, Chen YC (2007) Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria. Nanomedicine 2(6):777–787Google Scholar
  149. 149.
    Pissuwan D, Cortie CH, Valenzuela SM, Cortie MB (2007) Gold nanosphere-antibody conjugates for hyperthermal therapeutic applications. Gold Bull 40(2):121–129Google Scholar
  150. 150.
    Melancon MP, Lu W, Yang Z, Zhang R, Cheng Z, Elliot AM, Stafford J, Olson T, Zhang JZ, Li C (2008) In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther 7(6):1730–1739Google Scholar
  151. 151.
    Elliott AM, Stafford RJ, Schwartz J, Wang J, Shetty AM, Bourgoyne C, O’Neal P, Hazle JD (2007) Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic resonance thermal imaging. Med Phys 34(7):3102–3108Google Scholar
  152. 152.
    El-Sayed IH, Huang XH, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834Google Scholar
  153. 153.
    Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63(9):1999–2004Google Scholar
  154. 154.
    Yelin D, Oron D, Thiberge S, Moses E, Silberberg Y (2003) Multiphoton plasmon-resonance microscopy. Opt Express 11(12):1385–1391Google Scholar
  155. 155.
    Troutman TS, Barton JK, Romanowski M (2007) Optical coherence tomography with plasmon resonant nanorods of gold. Opt Lett 32(11):1438–1440Google Scholar
  156. 156.
    Adler DC, Huang SW, Huber R, Fujimoto JG (2008) Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. Opt Express 16(7):4376–4393Google Scholar
  157. 157.
    Lim YT, Cho MY, Kim JK, Hwangbo S, Chung BH (2007) Plasmonic magnetic nanostructure for bimodal imaging and photonic-based therapy of cancer cells. Chembiochem 8(18):2204–2209Google Scholar
  158. 158.
    Maltzahn GVC A, Park J, Ramanathan R, Sailor MJ, Hatton TA, Bhatia SN (2009) SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv Mater 21(31):3175–3180Google Scholar
  159. 159.
    Zaman RT, Diagaradjane P, Wang JC, Schwartz J, Rajaram N, Gill-Sharp KL, Cho SH, Rylander HG, Payne JD, Krishnan S, Tunnell JW (2008) In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy. IEEE J Sel Top Quantum Electron 13(6):1715–1720Google Scholar
  160. 160.
    Wang XD, Ku G, Wegiel MA, Bornhop DJ, Stoica G, Wang LHV (2004) Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent. Opt Lett 29(7):730–732Google Scholar
  161. 161.
    Hu M, Chen JY, Li ZY, Au L, Hartland GV, Li XD, Marquez M, Xia YN (2006) Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35(11):1084–1094Google Scholar
  162. 162.
    Eghtedari M, Oraevsky A, Copland JA, Kotov NA, Conjusteau A, Motamedi M (2007) High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett 7(7):1914–1918Google Scholar
  163. 163.
    Li PC, Wang CRC, Shieh DB, Wei CW, Liao CK, Poe C, Jhan S, Ding AA, Wu YN (2008) In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt Express 16(23):18605–18615Google Scholar
  164. 164.
    Li PC, Wei CW, Liao CK, Chen CD, Pao KC, Wang CRC, Wu YN, Shieh DB (2007) Photoacoustic imaging of multiple targets using gold nanorods. IEEE Trans Ultrason Ferroelectr Freq Control 54(8):1642–1647Google Scholar
  165. 165.
    Song KH, Kim C, Maslov K, Wang LV (2009) Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes. Eur J Radiol 70(2):227–231Google Scholar
  166. 166.
    Kim K, Huang SW, Ashkenazi S, O’Donnell M, Agarwal A, Kotov NA, Denny MF, Kaplan MJ (2007) Photoacoustic imaging of early inflammatory response using gold nanorods. Appl Phys Lett 90(22):223901Google Scholar
  167. 167.
    Liao CK, Huang SW, Wei CW, Li PC (2007) Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system. J Biomed Opt 12(6):064006Google Scholar
  168. 168.
    Chamberland DL, Agarwal A, Kotov N, Fowlkes JB, Carson PL, Wang X (2008) Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent - an ex vivo preliminary rat study. Nanotechnology 19(9):095101Google Scholar
  169. 169.
    Cho EC, Kim C, Zhou F, Cobley CM, Song KH, Chen JY, Li ZY, Wang LHV, Xia YN (2009) Measuring the optical absorption cross sections of Au-Ag nanocages and Au nanorods by photoacoustic imaging. J Phys Chem C 113(21):9023–9028Google Scholar
  170. 170.
    Yang XM, Skrabalak SE, Li ZY, Xia YN, Wang LHV (2007) Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent. Nano Lett 7(12):3798–3802Google Scholar
  171. 171.
    Foldvari M, Bagonluri M (2008) Carbon nanotubes as functional excipients for nanomedicines: I. Pharmaceutical properties. Nanomed Nanotechnol Biol Med 4(3):173–182Google Scholar
  172. 172.
    Foldvari M, Bagonluri M (2008) Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomed Nanotechnol Biol Med 4(3):183–200Google Scholar
  173. 173.
    Hong H, Gao T, Cai WB (2009) Molecular imaging with single-walled carbon nanotubes. Nano Today 4(3):252–261Google Scholar
  174. 174.
    Pramanik M, Wang LV (2009) Thermoacoustic and photoacoustic sensing of temperature. J Biomed Opt 14(5):054024Google Scholar
  175. 175.
    O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma JP, Hauge RH, Weisman RB, Smalley RE (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581):593–596Google Scholar
  176. 176.
    Berciaud S, Cognet L, Poulin P, Weisman RB, Lounis B (2007) Absorption spectroscopy of individual single-walled carbon nanotubes. Nano Lett 7(5):1203–1207Google Scholar
  177. 177.
    De La Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Smith BR, Ma TJ, Oralkan O, Cheng Z, Chen XY, Dai HJ, Khuri-Yakub BT, Gambhir SS (2008) Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3(9):557–562Google Scholar
  178. 178.
    Xiang LZ, Yuan Y, Xing D, Ou ZM, Yang SH, Zhou FF (2009) Photoacoustic molecular imaging with antibody-functionalized single-walled carbon nanotubes for early diagnosis of tumor. J Biomed Opt 14(2):021008Google Scholar
  179. 179.
    Pramanik M, Song KH, Swierczewska M, Green D, Sitharaman B, Wang LHV (2009) In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node. Phys Med Biol 54(11):3291–3301Google Scholar
  180. 180.
    Kim JW, Galanzha EI, Shashkov EV, Moon HM, Zharov VP (2009) Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol 4(10):688–694Google Scholar
  181. 181.
    Galanzha EI, Shashkov EV, Kelly T, Kim JW, Yang LL, Zharov VP (2009) In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat Nanotechnol 4(12):855–860Google Scholar
  182. 182.
    de la Zerda A, Liu ZA, Bodapati S, Teed R, Vaithilingam S, Khuri-Yakub BT, Chen XY, Dai HJ, Gambhir SS (2010) Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett 10(6):2168–2172Google Scholar
  183. 183.
    Sharma P, Brown S, Walter G, Santra S, Moudgil B (2006) Nanoparticles for bioimaging. Adv Colloid Interface Sci 123:471–485Google Scholar
  184. 184.
    Ku G, Wang LHV (2005) Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Opt Lett 30(5):507–509Google Scholar
  185. 185.
    Desmettre T, Devoisselle JM, Mordon S (2000) Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol 45(1):15–27Google Scholar
  186. 186.
    Mordon S, Devoisselle JM, Soulie-Begu S, Desmettre T (1998) Indocyanine green: physicochemical factors affecting its fluorescence in vivo. Microvasc Res 55(2):146–152Google Scholar
  187. 187.
    Zhang B, Yan B (2010) Analytical strategies for characterizing the surface chemistry of nanoparticles. Anal Bioanal Chem 396:973–982Google Scholar
  188. 188.
    Boverhof DR, David RM (2010) Nanomaterial characterization: considerations and needs for hazard assessment and safety evaluation. Anal Bioanal Chem 396:953–961Google Scholar
  189. 189.
    Fadeel B, Garcia-Bennett AE (2010) Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Delivery Rev 62:362–374Google Scholar
  190. 190.
    Powers KW, Palazuelos M, Moudgil BM, Roberts SM (2007) Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1(1):42–51Google Scholar
  191. 191.
    Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90(2):296–303Google Scholar
  192. 192.
    Oberdörster G, Oberdörster E, Oberdörster J (2007) Concepts of nanoparticle dose metric and response metric. Environ Health Perspect 115:A290Google Scholar
  193. 193.
    Oberdörster G, Ferin J, Lehnert BE (1994) Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102:173–179Google Scholar
  194. 194.
    Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25Google Scholar
  195. 195.
    Stone V, Johnston H, Schins RPF (2009) Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol 39(7):613–626Google Scholar
  196. 196.
    McNeil SE (2009) Nanoparticle therapeutics: a personal perspective. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 1:264–271Google Scholar
  197. 197.
    Wang L, O’Donoghue MB, Tan W (2006) Nanoparticles for multiplex diagnostics and imaging. Nanomedicine 1(4):413–426Google Scholar
  198. 198.
    Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18(4):410–414Google Scholar
  199. 199.
    Jiancheng L, Zhenhua L, He A (2003) Research on refractive index distribution in biological tissues. Proc SPIE 4876:103–108Google Scholar
  200. 200.
    Sharma P, Singh A, Brown SC, Bengtsson N, Walter GA, Grobmyer SR, Iwakuma N, Santra S, Scott EW, Moudgil BM (2010) Multimodal nanoparticulate bioimaging contrast agents. In: Cancer nanotechnology: Methods and protocols, vol 624. Methods in molecular biology. Springer, Secaucus, NJ, pp 67–81Google Scholar
  201. 201.
    Kim J, Piao Y, Hyeon T (2009) Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 38(2):372–390Google Scholar
  202. 202.
    Louie A (2010) Multimodality imaging probes: design and challenges. Chem Rev 110(5):3146–3195Google Scholar
  203. 203.
    Jennings LE, Long NJ (2009) ‘two is better than one’—probes for dual-modality molecular imaging. Chem Commun 24:3511–3524Google Scholar
  204. 204.
    Catana C, Wu YB, Judenhofer MS, Qi JY, Pichler BJ, Cherry SR (2006) Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 47(12):1968–1976Google Scholar
  205. 205.
    Cherry SR (2006) The 2006 Henry N. Wagner lecture: of mice and men (and positrons) - advances in PET imaging technology. J Nucl Med 47(11):1735–1745Google Scholar
  206. 206.
    Cherry SR (2001) Fundamentals of positron emission tomography and applications in preclinical drug development. J Clin Pharm 41(5):482–491Google Scholar
  207. 207.
    Lee HY, Li Z, Chen K, Hsu AR, Xu CJ, Xie J, Sun SH, Chen XY (2008) PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J Nucl Med 49(8):1371–1379Google Scholar
  208. 208.
    Tran TD, Caruthers SD, Hughes M, Marsh JN, Cyrus T, Winter PM, Neubauer AM, Wickline SA, Lanza GM (2007) Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics. Int J Nanomed 2(4):515–526Google Scholar
  209. 209.
    Devaraj NK, Keliher EJ, Thurber GM, Nahrendorf M, Weissleder R (2009) 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug Chem 20(2):397–401Google Scholar
  210. 210.
    Hwang DW, Ko HY, Kim S-K, Kim D, Lee DS, Kim S (2009) Development of a quadruple imaging modality by using nanoparticles. Chemistry 15:9387–9393Google Scholar
  211. 211.
    Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7(7):1929–1934Google Scholar
  212. 212.
    Skrabalak SE, Chen J, Au L, Lu X, Li X, Xia Y (2007) Gold nanocages for biomedical applications. Adv Mater 19(20):3177–3184Google Scholar
  213. 213.
    Kam NWS, O’Connell M, Wisdom JA, Dai HJ (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102(33):11600–11605Google Scholar
  214. 214.
    McCarthy JR, Jaffer FA, Weissleder R (2006) A macrophage-targeted theranostic nanoparticle for biomedical applications. Small 2(8–9):983–987Google Scholar
  215. 215.
    Lu J, Liong M, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3(8):1341–1346Google Scholar
  216. 216.
    Adiseshaiah PP, Hall JB, McNeil SE (2009) Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 2:99–112Google Scholar
  217. 217.
    Cancer trends progress report (2009-2010) National Cancer Institute, Accessed 10 Aug 2010
  218. 218.
    NCI funded research portfolio (2009) National Cancer Institute,;jsessionid=107562A56E42858129D2785D47CEDE77?action=full&fy=PUB2009&type=site. Accessed 10 Aug 2010
  219. 219.
    Estimates of funding for various research, condition, and disease categories (RCDC) (2010) National Institutes of Health, Accessed 10 Aug 2010
  220. 220.
    Chen SL, Hoehne FM, Giuliano AE (2007) The prognostic significance of micrometastases in breast cancer: a SEER population-based analysis. Ann Surg Oncol 14(12):3378–3384Google Scholar
  221. 221.
    Morton DL, Cochran AJ, Thompson JF, Elashoff R, Essner R, Glass EC, Mozzillo N, Nieweg OE, Roses DF, Hoekstra HJ, Karakousis CP, Reintgen DS, Coventry BJ, Wang HJ (2005) Sentinel node biopsy for early-stage melanoma - accuracy and morbidity in MSLT-I, an international multicenter trial. Ann Surg 242(3):302–313Google Scholar
  222. 222.
    Adams CP, Brantner VV (2006) Estimating the cost of new drug development: is it really $802 million? Health Aff 25(2):420–428Google Scholar
  223. 223.
    Bawa R (2008) Nanoparticle-based therapeutics in humans: a survey. Nanotechnol Law Bus 5(2):135–155Google Scholar
  224. 224.
    Nanotechnology task force (2006) U.S. Food and Drug Administration, Accessed 10 Aug 2010
  225. 225.
    Sosnovik D, Weissleder R (2005) Magnetic resonance and fluorescence based molecular imaging technologies. In: Rudin M (ed) Progress in drug research, vol 62. Progress in drug research. Birkhauser, Switzerland, pp 83–115Google Scholar
  226. 226.
    Baker M (2010) The whole picture. Nature 463:977–980Google Scholar
  227. 227.
    Kobayashi H, Hama Y, Koyama Y, Barrett T, Regino CAS, Urano Y, Choyke PL (2007) Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett 7(6):1711–1716Google Scholar
  228. 228.
    Jun Y-w, Huh Y-M, J-s C, Lee J-H, Song H-T, KimKim YS, Kim K-S, Shin J-S, Suh J-S, Cheon J (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127(16):5732–5733Google Scholar
  229. 229.
    Jun Y-w, Lee JH, Cheon J (2008) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed 47(28):5122–5135Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Megan A. Hahn
    • 1
  • Amit K. Singh
    • 2
  • Parvesh Sharma
    • 1
  • Scott C. Brown
    • 1
  • Brij M. Moudgil
    • 1
    • 2
  1. 1.Particle Engineering Research CenterUniversity of FloridaGainesvilleUSA
  2. 2.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations