Analytical and Bioanalytical Chemistry

, Volume 398, Issue 6, pp 2693–2700 | Cite as

Microfluidic immunosensor with integrated liquid core waveguides for sensitive Mie scattering detection of avian influenza antigens in a real biological matrix

  • Brian C. Heinze
  • Jessica R. Gamboa
  • Keesung Kim
  • Jae-Young Song
  • Jeong-Yeol Yoon
Original Paper


This work presents the use of integrated, liquid core, optical waveguides for measuring immunoagglutination-induced light scattering in a microfluidic device, towards rapid and sensitive detection of avian influenza (AI) viral antigens in a real biological matrix (chicken feces). Mie scattering simulations were performed and tested to optimize the scattering efficiency of the device through proper scatter angle waveguide geometry. The detection limit is demonstrated to be 1 pg mL−1 in both clean buffer and real biological matrix. This low detection limit is made possible through on-chip diffusional mixing of AI target antigens and high acid content microparticle assay reagents, coupled with real-time monitoring of immunoagglutination-induced forward Mie scattering via high refractive index liquid core optical waveguides in close proximity (100 μm) to the sample chamber. The detection time for the assay is <2 min. This device could easily be modified to detect trace levels of any biological molecules that antibodies are available for, moving towards a robust platform for point-of-care disease diagnostics.


Lab-on-a-chip Optofluidic Immunoassay Bird flu Latex agglutination Influenza A 


  1. 1.
    Mairhofer J, Roppert K, Ertl P (2009) Microfluidic systems for pathogen sensing: a review. Sensors 9:4804–4823CrossRefGoogle Scholar
  2. 2.
    Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442:412–418CrossRefGoogle Scholar
  3. 3.
    Molina-Bolívar JA, Galisteo-González F (2005) Latex immunoagglutination assays. Polym Rev 45:59–98CrossRefGoogle Scholar
  4. 4.
    Martin CR, Mitchell DT (1998) Nanomaterials in analytical chemistry. Anal Chem 70:322A–327ACrossRefGoogle Scholar
  5. 5.
    Heinze BC, Song JY, Lee CH, Najam A, Yoon JY (2009) Microfluidic immunosensor for rapid and sensitive detection of bovine viral diarrhea virus. Sens Actuators B 138:491–496CrossRefGoogle Scholar
  6. 6.
    Han JH, Heinze BC, Yoon JY (2008) Single cell level detection of Escherichia coli in microfluidic device. Biosens Bioelectron 23:1303–1306CrossRefGoogle Scholar
  7. 7.
    Lucas LJ, Han JH, Cheseler J, Yoon JY (2007) Lab-on-a-chip immunoassay for multiple antibodies using microsphere light scattering and quantum dot emission. Biosens Bioelectron 22:2216–2222CrossRefGoogle Scholar
  8. 8.
    Bang’s Laboratories (2008) Tech Note #304: Light Scattering Assays. Fishers, IN, USA. Accessed 15 Oct 2008
  9. 9.
    Mukundan H, Anderson AS, Grace WK, Grace KM, Hartman N, Martinez JS, Swanson BI (2009) Waveguide-based biosensors for pathogen detection. Sensors 9:5783–5809CrossRefGoogle Scholar
  10. 10.
    Su X-T, Singh K, Capjak C, Petracek J, Backhouse C, Rozmus WJ (2008) Measurements of light scattering in an integrated microfluidic waveguide cytometer. Biomed Optics 13:024024CrossRefGoogle Scholar
  11. 11.
    Bliss CL, McMullin JN, Backhouse CJ (2007) Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis. Lab Chip 7:1280–1287CrossRefGoogle Scholar
  12. 12.
    Alexander DJ, Capua I, Broan IH (2005) Summary of avian influenza activity in Europe, Asia, Africa, and Australasia. In: Schrijver RS, Koch G (eds) Avian influenza: prevention and control. Springer, Dordrecht, pp 2002–2006Google Scholar
  13. 13.
    Clark L, Hall J (2006) Avian influenza in wild birds: status as reservoirs, and risks to humans and agriculture. In: Barraclough RK (ed) Current topics in avian disease research. The American Ornithologists Union, Washington, DC, pp 3–29Google Scholar
  14. 14.
    Pasick J (2008) Advances in the molecular based techniques for the diagnosis and characterization of avian influenza virus infections. Transboundary Emerg Dis 55:329–338CrossRefGoogle Scholar
  15. 15.
    Jia R, Cheng A, Wang M, Qi X, Zhu D, Ge H, Luo A, Guo Y, Chen DJ (2009) Development and evaluation of an antigen-capture ELISA for detection of the UL24 antigen of the duck enteritis virus, based on a polyclonal antibody against the UL24 expression protein. J Virol Meth 161:38–43CrossRefGoogle Scholar
  16. 16.
    Zhang A, Jin M, Liu F, Guo X, Hu Q, Han L, Tan Y, Chen H (2006) Development and evaluation of a DAS-ELISA for rapid detection of avian influenza viruses. Avian Dis 50:325–330CrossRefGoogle Scholar
  17. 17.
    Chen W, He B, Li C, Zhang X, Wu W, Yin X, Fan B, Wang J (2007) Real-time RT-PCR for H5N1 avian influenza a virus detection. J Med Microbiol 56:603–607CrossRefGoogle Scholar
  18. 18.
    Farkas T, Antal M, Sámi L, Germán P, Kecskemé S, Kardos G, Belák S, Kiss I (2007) Rapid and simultaneous detection of avian influenza and Newcastle disease viruses by duplex polymerase chain reaction assay. Zoonoses Public Health 54:38–43CrossRefGoogle Scholar
  19. 19.
    Tewari D, Zellers C, Acland H, Pendersen JC (2007) Automated extraction of avian influenza virus for rapid detection using real-time RT-PCR. Clin Virol 40:142–145CrossRefGoogle Scholar
  20. 20.
    Diouani MF, Helali S, Hassen WM, Snoussi MA, Ghram A, Jaffrezic-Renault N, Abdelghani A (2007) Miniaturized biosensor for avian influenza virus detection. Mater Sci Eng C 28:580–583CrossRefGoogle Scholar
  21. 21.
    S. Prahl (2007) Mie scattering calculator, Oregon Medical Laser Center, Beaverton, OR, USA. Accessed 23 Jan 2010
  22. 22.
    Madou MJ (2002) Fundamentals of microfabrication, 2nd edn. CRC, Boca Raton, pp 2–12, p 104–107Google Scholar
  23. 23.
    Han JH, Kim KS, Yoon JY (2007) Enhanced diffusional mixing for latex immunoagglutination assay in a microfluidic device. Anal Chim Acta 584:252–259CrossRefGoogle Scholar
  24. 24.
    Chen Y, Xu F, Gui X, Yang K, Wu X, Zheng Q, Ge S, Yuan Q, Yeo A, Zhang J, Guan Y, Chen H, Xia N (2010) A rapid test for the detection of influenza A virus including pandemic influenza A/H1N1. J Virol Meth 167:100–102CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Brian C. Heinze
    • 1
  • Jessica R. Gamboa
    • 1
  • Keesung Kim
    • 2
  • Jae-Young Song
    • 3
  • Jeong-Yeol Yoon
    • 1
  1. 1.Department of Agricultural and Biosystems EngineeringThe University of ArizonaTucsonUSA
  2. 2.School of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulSouth Korea
  3. 3.Virology Division, National Veterinary Research and Quarantine ServiceAnyangSouth Korea

Personalised recommendations