Advertisement

Analytical and Bioanalytical Chemistry

, Volume 398, Issue 5, pp 2039–2047 | Cite as

An efficient approach for the isolation, identification and evaluation of antimicrobial plant components on an analytical scale, demonstrated by the example of Radix imperatoriae

  • O. Gökay
  • D. Kühner
  • M. Los
  • F. Götz
  • U. Bertsche
  • K. AlbertEmail author
Original Paper

Abstract

Using Radix imperatoriae (the root of masterwort) as an example, we describe an efficient approach for the isolation, identification and evaluation of bioactive plant components on an analytical scale. The extraction of Radix imperatoriae with ethyl acetate was enhanced by the application of ultrasound oscillations. This rhizome extract was applied to three pathogenic bacteria (Bacillus cereus, Escherichia coli, and Staphylococcus aureus) to determine its antimicrobial activity. Disk diffusion was utilized to determine susceptibility. The extract components were separated using a series of chromatography approaches (semi-preparative RP-HPLC, or RP-HPLC on an analytical scale), followed by testing. All fractions were analyzed by LC-UV-ESI-MS and 600 MHz microcoil 1H NMR spectroscopy. Among other findings, in the fraction with the highest antibacterial activity we were able to identify oxypeucedanin and oxypeucedanin hydrate. Subsequent analysis revealed that only oxypeucedanin hydrate had antibacterial activity, whereas oxypeucedanin itself was inactive at the concentrations applied. Furthermore, oxypeucedanin hydrate appears to be largely, or exclusively, a by-product of sample preparation, since it is either not synthesized by the plant as a second metabolite or is produced by it in only very small quantities.

Keywords

Radix imperatoriae Peucedanum ostruthium Antimicrobial activity LC-ESI-MS Microcoil NMR 

Notes

Acknowledgements

The authors thank the Institute of Botany at the University of Tübingen for supplying them with plant material.

References

  1. 1.
    Ramawat KG, Merillon JM (eds)(2008) Bioactive molecules and medicinal plants. Springer, BerlinGoogle Scholar
  2. 2.
    Butenandt A, Marten A (1932) Über die Inhaltsstoffe der Meisterwurz (Imperatoria Ostruthium). Wiley-VCH, Weinheim, pp 187–210Google Scholar
  3. 3.
    Khaled SA, Szendrli K, Novak I (1974) Phytochemistry 14:1461–1462CrossRefGoogle Scholar
  4. 4.
    Hiermann A, Schantl D, Zsilavecz MS, Reine J (1996) Phytochemistry 43:881–883CrossRefGoogle Scholar
  5. 5.
    Reisch J, Khaled SA, Szendrei K, Novak I (1975) Phytochemistry 14:1889–1890CrossRefGoogle Scholar
  6. 6.
    Hörhammer L, Wagner H, Heydweiller D (1969) Phytochemistry 8:1605CrossRefGoogle Scholar
  7. 7.
    Reisch J, Khaled SA, Szendrei K, Novak I (1975) Phytochemistry 14:1137–1138CrossRefGoogle Scholar
  8. 8.
    Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Nat Protoc 1:387CrossRefGoogle Scholar
  9. 9.
    Monton MRN, Soga T (2007) J Chromatogr A 1168:237CrossRefGoogle Scholar
  10. 10.
    Bajad SU, Lu WY, Kimball EH, Yuan J, Peterson C, Rabinowitz JD (2006) J Chromatogr A 1125:76CrossRefGoogle Scholar
  11. 11.
    Albert K (ed)(2002) On-line LC-NMR and related techniques. Wiley, ChichesterGoogle Scholar
  12. 12.
    Lewis IA, Schommer SC, Hodis B, Robb KA, Tonelli M, Westler WM, Suissman MR, Markley JL (2007) Anal Chem 79:9385CrossRefGoogle Scholar
  13. 13.
    Holtin K, Kuehnle M, Rehbein J, Schuler P, Nicholson G, Albert K (2009) Anal Bioanal Chem 395:1613–1622CrossRefGoogle Scholar
  14. 14.
    Want EJ, Cravatt BF, Siuzdak G (2005) Chembiochem 6:1941CrossRefGoogle Scholar
  15. 15.
    Kimball E, Rabinowitz JD (2006) Anal Biochem 358:273CrossRefGoogle Scholar
  16. 16.
    Want EJ, Nordstrom A, Morita H, Siuzdak G (2007) J Proteom Res 6:459CrossRefGoogle Scholar
  17. 17.
    Rabinowitz JD (2007) Exp Rev Proteom 4:187CrossRefGoogle Scholar
  18. 18.
    Rabinowitz JD, Kimball E (2007) Anal Chem 79:6167CrossRefGoogle Scholar
  19. 19.
    Albert K, Bayer E (1992) Patonay G (ed) High-performance liquid chromatography proton nuclear magnetic resonance on-line coupling. VCH, New York, pp 197–229Google Scholar
  20. 20.
    Grynbaum MD, Meyer C, Putzbach K, Rehbein J, Albert K (2007) J Chromatogr A 1156:80–86CrossRefGoogle Scholar
  21. 21.
    Grynbaum MD, Kreidler D, Rehbein J, Purea A, Schuler P, Schaal W, Czesla H, Webb A, Volker S, Albert K (2007) Anal Chem 79:2708–2713CrossRefGoogle Scholar
  22. 22.
    Shadomy S, Pfalle MA (1991) Manual of clinical microbiology, 5th edn. American Society for Microbiology, WashingtonGoogle Scholar
  23. 23.
    National Committee for Clinical Laboratory Standards (1998) Performance standards for antimicrobial susceptibility tests, 6th edn (approved standard; document M2-A6, vol. 18, no. 1). National Committee for Clinical Laboratory Standards, VillanovaGoogle Scholar
  24. 24.
    Pfaller MA, Boyken L, Messer SA, Hollis RJ, Diekema DJ (2004) J Clin Microbiol 42:1288–1289CrossRefGoogle Scholar
  25. 25.
    Raitza M, Pursch M, Strohschein S, Albert K, Sander LC (1998) GIT Lab J 2:237–241Google Scholar
  26. 26.
    Albert K, Händel H, Pursch M, Strohschein S (1996) In: Pesek JJ, Matyska MT, Abuelafiya RR (eds) Chemically modified surfaces, vol. 6. The Royal Society of Chemistry, Cambridge, pp 30–44Google Scholar
  27. 27.
    Albert K, Schlotterbeck G, Braumann U, Händel H, Spraul M, Krack G (1995) Angew Chem Int Ed Engl 34:1014–1016CrossRefGoogle Scholar
  28. 28.
    Kühnle M, Holtin K, Kreidler D, Czesla H, Schurig V, Schuler P, Schaal W, Albert K (2008) Anal Chem 80:5481–5486CrossRefGoogle Scholar
  29. 29.
    Albert K, Braumann U, Tseng LH, Nicholson G, Bayer E, Spraul M, Hofmann M, Dowle C, Chippendale M (1994) Anal Chem 66:3042–3046CrossRefGoogle Scholar
  30. 30.
    Albert K (1995) Angew Chem Int Ed Engl 34:641–642CrossRefGoogle Scholar
  31. 31.
    Waridel P, Wolfender JL, Lachavanne JB, Hostettmann K (2004) Phytochemistry 65:945CrossRefGoogle Scholar
  32. 32.
    Bringmann G, Messer K, Wohlarth M, Kraus J, Dumbuya K, Rueckert M (1999) Anal Chem 71:2678CrossRefGoogle Scholar
  33. 33.
    Bringmann G, Wohlfarth M, Rischer H, Schlauer J, Brun J (2002) Phytochemistry 61:195–204CrossRefGoogle Scholar
  34. 34.
    Schneider B, Paetz C, Hölscher D, Opitz Stefan (2005) Magn Reson Chem 43:724–728CrossRefGoogle Scholar
  35. 35.
    Schneider B, Gershenzon J, Graser G, Hölscher D, Schmitt B (2003) Phytochem Rev 2:31–43CrossRefGoogle Scholar
  36. 36.
    Sprogøe K, Stærk D, Ziegler HL, Jensen TH, Holm-Møller SB, Jaroszewski JW (2008) J Nat Prod 71:516–519CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • O. Gökay
    • 1
  • D. Kühner
    • 2
  • M. Los
    • 3
  • F. Götz
    • 2
  • U. Bertsche
    • 2
  • K. Albert
    • 1
    Email author
  1. 1.Institute of Organic Chemistry, University of TübingenTübingenGermany
  2. 2.Institute of Microbiology and Infectious Diseases, University of TübingenTübingenGermany
  3. 3.Interfaculty Institute for Biochemistry, University of TübingenTübingenGermany

Personalised recommendations