Analytical and Bioanalytical Chemistry

, Volume 398, Issue 7–8, pp 2883–2893 | Cite as

Protein analysis of laser capture micro-dissected tissues revealed cell-type specific biological functions in developing barley grains

  • Stephanie Kaspar
  • Diana Weier
  • Winfriede Weschke
  • Hans-Peter Mock
  • Andrea Matros
Original Paper


Both the nucellar projection (NP) and endosperm transfer cells (ETC) of the developing barley grain (harvested 8 days after flowering) were isolated by laser capture micro-dissection combined with pressure catapulting. Protein extracts were analyzed by nanoUPLC separation combined with ESI-Q-TOF mass spectrometry. The majority of the ∼160 proteins identified were involved in translation, protein synthesis, or protein destination. The NP proteome was enriched for stress defense molecules, while proteins involved in assimilate transport and the mobilization of nutrients were common to both the NP and the ETC. The combined qualitative and quantitative protein profiling allowed for the identification of several proteins showing tissue specificity in their expression, which underlines the distinct biological functions of these two tissues within the developing barley grain.


Grain development Barley Micro-dissection Nucellar projection Endosperm transfer cells Multiplexed LC-MS 

Supplementary material

216_2010_4120_MOESM1_ESM.pdf (511 kb)
ESM 1(PDF 510 kb)


  1. 1.
    Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31(1):11–38Google Scholar
  2. 2.
    Olsen OA (2001) Endosperm development: cellularization and cell fate specification. Annu Rev Plant Physiol Plant Mol Biol 52:233–267CrossRefGoogle Scholar
  3. 3.
    Gruis D, Guo HN, Selinger D, Tian Q, Olsen OA (2006) Surface position, not signaling from surrounding maternal tissues, specifies aleurone epidermal cell fate in maize. Plant Physiol 141(3):898–909CrossRefGoogle Scholar
  4. 4.
    Olsen OA (2007) Endosperm: developmental and molecular biology. Springer Verlag, BerlinGoogle Scholar
  5. 5.
    Radchuk VV, Borisjuk L, Sreenivasulu N, Merx K, Mock HP, Rolletschek H, Wobus U, Weschke W (2009) Spatiotemporal profiling of starch biosynthesis and degradation in the developing barley grain. Plant Physiol 150(1):190–204CrossRefGoogle Scholar
  6. 6.
    Thiel J, Weier D, Sreenivasulu N, Strickert M, Weichert N, Melzer M, Czauderna T, Wobus U, Weber H, Weschke W (2008) Different hormonal regulation of cellular differentiation and function in nucellar projection and endosperm transfer cells: a microdissection-based transcriptome study of young barley grains. Plant Physiol 148(3):1436–1452CrossRefGoogle Scholar
  7. 7.
    Weichert N, Saalbach I, Weichert H, Kohl S, Erban A, Kopka J, Hause B, Varshney A, Sreenivasulu N, Strickert M, Kumlehn J, Weschke W, Weber H (2010) Increasing sucrose uptake capacity of wheat grains stimulates storage protein synthesis. Plant Physiol 152(2):698–710CrossRefGoogle Scholar
  8. 8.
    Weschke W, Panitz R, Sauer N, Wang Q, Neubohn B, Weber H, Wobus U (2000) Sucrose transport into barley seeds: molecular characterization of two transporters and implications for seed development and starch accumulation. Plant J 21(5):455–467CrossRefGoogle Scholar
  9. 9.
    Sreenivasulu N, Radchuk V, Strickert M, Miersch O, Weschke W, Wobus U (2006) Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and aba-regulated maturation in developing barley seeds. Plant J 47(2):310–327CrossRefGoogle Scholar
  10. 10.
    Ramsay K, Jones MGK, Wang ZH (2006) Laser capture microdissection: a novel approach to microanalysis of plant-microbe interactions. Mol Plant Pathol 7(5):429–435CrossRefGoogle Scholar
  11. 11.
    Hennig L (2007) Patterns of beauty—omics meets plant development. Trends Plant Sci 12(7):287–293CrossRefGoogle Scholar
  12. 12.
    Mustafa DAN, Burgers PC, Dekker LJ, Charif H, Titulaer MK, Sillevis Smitt PAE, Luider TM, Kros JM (2007) Identification of glioma neovascularization-related proteins by using MALDI-FTMS and nano-LC fractionation to microdissected tumor vessels. Mol Cell Proteomics 6(7):1147–1157CrossRefGoogle Scholar
  13. 13.
    Kaspar S, Matros A, Mock HP (2010) Proteome and flavonoid analysis reveals distinct responses of epidermal tissue and whole leaves upon UV-B radiation of barley (Hordeum vulgare L.) seedlings. J Proteome Res 9(5):2402–2411CrossRefGoogle Scholar
  14. 14.
    Silva JC, Denny R, Dorschel C, Gorenstein MV, Li GZ, Richardson K, Wall D, Geromanos SJ (2006) Simultaneous qualitative and quantitative analysis of the Escherichia coli proteome—a sweet tale. Mol Cell Proteomics 5(4):589–607Google Scholar
  15. 15.
    Li GZ, Vissers JPC, Silva JC, Golick D, Gorenstein MV, Geromanos SJ (2009) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 9(6):1696–1719CrossRefGoogle Scholar
  16. 16.
    Xu DM, Suenaga N, Edelmann MJ, Fridman R, Muschel RJ, Kessler BM (2008) Novel mmp − 9 substrates in cancer cells revealed by a label-free quantitative proteomics approach. Mol Cell Proteomics 7(11):2215–2228CrossRefGoogle Scholar
  17. 17.
    Cheng FY, Blackburn K, Lin YM, Goshe MB, Williamson JD (2009) Absolute protein quantification by LC/MSe for global analysis of salicylic acid-induced plant protein secretion responses. J Proteome Res 8(1):82–93CrossRefGoogle Scholar
  18. 18.
    Sreenivasulu N, Altschmied L, Radchuk V, Gubatz S, Wobus U, Weschke W (2004) Transcript profiles and deduced changes of metabolic pathways in maternal and filial tissues of developing barley grains. Plant J 37(4):539–553CrossRefGoogle Scholar
  19. 19.
    Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein N, Weschke W, Strickert M, Close TJ, Stitt M, Graner A, Wobus U (2008) Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MAPMAN/PAGEMAN profiling tools. Plant Physiol 146(4):1738–1758CrossRefGoogle Scholar
  20. 20.
    Thiel J, Muller M, Weschke W, Weber H (2009) Amino acid metabolism at the maternal-filial boundary of young barley seeds: a microdissection-based study. Planta 230(1):205–213CrossRefGoogle Scholar
  21. 21.
    Schad M, Lipton MS, Giavalisco P, Smith RD, Kehr J (2005) Evaluation of two-dimensional electrophoresis and liquid chromatography tandem mass spectrometry for tissue-specific protein profiling of laser-microdissected plant samples. Electrophoresis 26(14):2729–2738CrossRefGoogle Scholar
  22. 22.
    Umar A, Luider TM, Foekens JA, Pasa-Tolic L (2007) NanoLC-FT-ICR MS improves proteome coverage attainable for similar to 3000 laser-microdissected breast carcinoma cells. Proteomics 7(2):323–329CrossRefGoogle Scholar
  23. 23.
    Dembinsky D, Woll K, Saleem M, Liu Y, Fu Y, Borsuk LA, Lamkemeyer T, Fladerer C, Madlung J, Barbazuk B, Nordheim A, Nettleton D, Schnable PS, Hochholdinger F (2007) Transcriptomic and proteomic analyses of pericycle cells of the maize primary root. Plant Physiol 145(3):575–588CrossRefGoogle Scholar
  24. 24.
    Wang YJ, Rudnick PA, Evans EL, Li J, Zhuang ZP, DeVoe DL, Lee CS, Balgley BM (2005) Proteome analysis of microdissected tumor tissue using a capillary isoelectric focusing-based multidimensional separation platform coupled with ESI-tandem MS. Anal Chem 77(20):6549–6556CrossRefGoogle Scholar
  25. 25.
    Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson SA, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl TM, Terryn N, Gielen J, Villarroel R, De Clerck R, Van Montagu M, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian KD, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Dusterhoft A, Moores T, Jones JDG, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes HW, Klosterman S, Schueller C, Chalwatzis N (1998) Analysis of 1.9 mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391(6666):485–488CrossRefGoogle Scholar
  26. 26.
    Offler CE, McCurdy DW, Patrick JW, Talbot MJ (2003) Transfer cells: cells specialized for a special purpose. Annu Rev Plant Biol 54:431–454CrossRefGoogle Scholar
  27. 27.
    Hamilton CA, Good AG, Taylor GJ (2001) Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat. Plant Physiol 125(4):2068–2077CrossRefGoogle Scholar
  28. 28.
    Klingenberg M (2008) The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta 1778(10):1978–2021CrossRefGoogle Scholar
  29. 29.
    Kovalchuk N, Smith J, Pallotta M, Singh R, Ismagul A, Eliby S, Bazanova N, Milligan AS, Hrmova M, Langridge P, Lopato S (2009) Characterization of the wheat endosperm transfer cell-specific protein tapr60. Plant Mol Biol 71(1–2):81–98CrossRefGoogle Scholar
  30. 30.
    Klein C, Aivaliotis M, Olsen JV, Falb M, Besir H, Scheffer B, Bisle B, Tebbe A, Konstantinidis K, Siedler F, Pfeiffer F, Mann M, Oesterhelt D (2007) The low molecular weight proteome of Halobacterium salinarum. J Proteome Res 6(4):1510–1518CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Stephanie Kaspar
    • 1
  • Diana Weier
    • 2
  • Winfriede Weschke
    • 2
  • Hans-Peter Mock
    • 1
  • Andrea Matros
    • 1
  1. 1.Applied Biochemistry GroupLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  2. 2.Seed DevelopmentLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations