Analytical and Bioanalytical Chemistry

, Volume 398, Issue 4, pp 1707–1713 | Cite as

Raman spectroscopic imaging for in vivo detection of cerebral brain metastases

  • Matthias Kirsch
  • Gabriele Schackert
  • Reiner Salzer
  • Christoph Krafft
Paper in Forefront


We report for the first time a proof-of-concept experiment employing Raman spectroscopy to detect intracerebral tumors in vivo by brain surface mapping. Raman spectroscopy is a non-destructive biophotonic method which probes molecular vibrations. It provides a specific fingerprint of the biochemical composition and structure of tissue without using any labels. Here, the Raman system was coupled to a fiber-optic probe. Metastatic brain tumors were induced by injection of murine melanoma cells into the carotid artery of mice, which led to subcortical and cortical tumor growth within 14 days. Before data acquisition, the cortex was exposed by creating a bony window covered by a calcium fluoride window. Spectral contributions were assigned to proteins, lipids, blood, water, bone, and melanin. Based on the spectral information, Raman images enabled the localization of cortical and subcortical tumor cell aggregates with accuracy of roughly 250 μm. This study demonstrates the prospects of Raman spectroscopy as an intravital tool to detect cerebral pathologies and opens the field for biophotonic imaging of the living brain. Future investigations aim to reduce the exposure time from minutes to seconds and improve the lateral resolution.


In vivo Raman spectroscopy Brain metastases Fiber-optic probes Murine brain tumor model 



We would like to thank Dr. Daniel Martin and Dipl. Biol Elke Leipnitz for their help. The research is funded by the German Research Foundation (DFG) within the project “Real time diagnosis of brain metastasis in animal models using Raman imaging” and by the MedDrive Start-up funds of the Medical Faculty, Dresden University of Technology.


  1. 1.
    Krafft C, Sobottka SB, Schackert G, Salzer R (2006) Raman and infrared spectroscopic mapping of human primary intracranial tumors: a comparative study. J Raman Spectrosc 37:367–375CrossRefGoogle Scholar
  2. 2.
    Krafft C, Sobottka SB, Schackert G, Salzer R (2005) Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors. Analyst 130:1070–1077CrossRefGoogle Scholar
  3. 3.
    Krafft C, Kirsch M, Beleites C, Schackert G, Salzer R (2007) Methodology for fiber-optic Raman mapping and FTIR imaging of metastases in mouse brains. Anal Bioanal Chem 389:1133–1142CrossRefGoogle Scholar
  4. 4.
    Schackert G, Fidler IJ (1988) Development of in vivo models for studies of brain metastasis. Int J Cancer 41:589–594CrossRefGoogle Scholar
  5. 5.
    Kirsch M, Weigel P, Pinzer T, Carroll RS, Black PM, Schackert HK, Schackert G (2005) Therapy of hematogenous melanoma brain metastases with endostatin. Clin Cancer Res 11:1259–1267Google Scholar
  6. 6.
    Krafft C, Codrich D, Pelizzo G, Sergo V (2008) Raman and FTIR imaging of lung tissue: methodology for control samples. Vib Spectrosc 46:141–149CrossRefGoogle Scholar
  7. 7.
    Matousek P, Morris MD, Everall N, Clark IP, Towrie M, Draper E, Goodship A, Parker AW (2005) Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl Spectrosc 59:1485–1492CrossRefGoogle Scholar
  8. 8.
    Schulmerich MV, Cole JH, Dooley KA, Morris MD, Kreider JM, Goldstein SA, Srinivasan S, Pogue BW (2008) Noninvasive Raman tomographic imaging of canine bone tissue. J Biomed Opt 13:020506CrossRefGoogle Scholar
  9. 9.
    Krafft C, Dietzek B, Popp J (2009) Raman and CARS microspectroscopy of cells and tissues. Analyst 134:1046–1057CrossRefGoogle Scholar
  10. 10.
    Bakker Schut TC, Witjes MJ, Sterenborg HJ, Speelman OC, Roodenburg JL, Marple ET, Bruining HA, Puppels GJ (2000) In vivo detection of dysplastic tissue by Raman spectroscopy. Anal Chem 72:6010–6018CrossRefGoogle Scholar
  11. 11.
    Huang Z, Bergholt MS, Zheng W, Lin K, Ho KY, The M, Yeoh KG (2010) In vivo early diagnosis of gastric dysplasia using narrow-band image-guided Raman endoscopy. J Biomed Opt 15:037017CrossRefGoogle Scholar
  12. 12.
    Utzinger U, Heintzelmann DL, Mahadevan-Jansen A, Malpica A, Follen M, Richards-Kortum R (2001) Near-infrared Raman spectroscopy for in vivo detection of cervical precancers. Appl Spectrosc 55:955–959CrossRefGoogle Scholar
  13. 13.
    Motz JT, Gandhi SJ, Scepanovic OR, Haka AS, Kramer JR, Dasari RR, Feld MS (2005) Real-time Raman system for in vivo disease diagnosis. J Biomed Opt 10:031113CrossRefGoogle Scholar
  14. 14.
    Molckovsky A, Song LM, Shim MG, Marcon NE, Wilson BC (2003) Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps. Gastrointest Endosc 57:396–402CrossRefGoogle Scholar
  15. 15.
    Buschman HP, Marple ET, Wach ML, Bennett B, Schut TC, Bruining HA, Bruschke AV, van der Laarse A, Puppels GJ (2000) In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy. Anal Chem 72:3771–3775CrossRefGoogle Scholar
  16. 16.
    Beljebbar A, Dukic S, Amharref N, Manfait M (2010) Ex vivo and in vivo diagnosis of C6 glioblastoma development by Raman spectroscopy coupled to microprobe. Anal Bioanal Chem 398:477–487Google Scholar
  17. 17.
    Amharref N, Beljebbar A, Dukic S, Venteo L, Schneider L, Pluot M, Manfait M (2007) Discriminating healthy from tumor and necrosis tissue in rat brain tissue samples by Raman spectral imaging. Biochim Biophys Acta 1768:2605–2615CrossRefGoogle Scholar
  18. 18.
    Magee ND, Villaumie JS, Marple ET, Ennis M, Elborn JS, McGarvey JJ (2009) Ex vivo diagnosis of lung cancer using a Raman miniprobe. J Phys Chem B 113:8137–8141CrossRefGoogle Scholar
  19. 19.
    Santos LF, Wolthuis R, Koljenovic S, Almeida RM, Puppels GJ (2005) Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region. Anal Chem 77:6747–6752CrossRefGoogle Scholar
  20. 20.
    Koljenovic S, Bakker Schut TC, Wolthuis R, Vincent AJPE, Hendriks-Hagevi G, Santos LF, Kros JM, Puppels GJ (2007) Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe. Anal Chem 79:557–564CrossRefGoogle Scholar
  21. 21.
    Flusberg BA, Nimmerjahn A, Cocker ED, Mukamel EA, Barretto RP, Ko TH, Burns LD, Jung JC, Schnitzer MJ (2008) High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat Methods 5:935–938CrossRefGoogle Scholar
  22. 22.
    Dreissig I, Machill S, Salzer R, Krafft C (2009) Quantification of brain lipids by FTIR spectroscopy and partial least squares regression. Spectrochim Acta A Mol Biomol Spectrosc 71:2069–2075CrossRefGoogle Scholar
  23. 23.
    Kohler M, Machill S, Salzer R, Krafft C (2009) Characterization of lipid extracts from brain tissue and tumors using Raman spectroscopy and mass spectrometry. Anal Bioanal Chem 393:1513–1520CrossRefGoogle Scholar
  24. 24.
    Chen P, Shen A, Zhao W, Baek SJ, Yuan H, Hu J (2009) Raman signature from brain hippocampus could aid Alzheimer's disease diagnosis. Appl Opt 48:4743–4748CrossRefGoogle Scholar
  25. 25.
    Evans CL, Xu X, Kesari S, Xie XS, Wong ST, Young GS (2007) Chemically-selective imaging of brain structures with CARS microscopy. Opt Express 15:12076–12087CrossRefGoogle Scholar
  26. 26.
    Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C, Tsai JC, Kang JX, Xie XS (2008) Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322:1857–1861CrossRefGoogle Scholar
  27. 27.
    Krafft C, Ramoji AA, Bielecki C, Vogler N, Meyer T, Akimov D, Rosch P, Schmitt M, Dietzek B, Petersen I, Stallmach A, Popp J (2009) A comparative Raman and CARS imaging study of colon tissue. J Biophotonics 2:303–312CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Matthias Kirsch
    • 1
  • Gabriele Schackert
    • 1
  • Reiner Salzer
    • 2
  • Christoph Krafft
    • 2
    • 3
  1. 1.Department of Neurosurgery, Carl Gustav Carus University HospitalDresden University of TechnologyDresdenGermany
  2. 2.Institute of Bioanalytical ChemistryDresden University of TechnologyDresdenGermany
  3. 3.Institute of Photonic TechnologyJenaGermany

Personalised recommendations