Advertisement

Analytical and Bioanalytical Chemistry

, Volume 398, Issue 7–8, pp 2813–2820 | Cite as

Proton transfer reaction mass spectrometry for the sensitive and rapid real-time detection of solid high explosives in air and water

  • S. Jürschik
  • P. Sulzer
  • F. Petersson
  • C. A. Mayhew
  • A. Jordan
  • B. Agarwal
  • S. Haidacher
  • H. Seehauser
  • K. Becker
  • T. D. Märk
Original Paper

Abstract

Relying on recent developments in proton transfer reaction mass spectrometry (PTR-MS), we demonstrate here the capability of detecting solid explosives in air and in water in real time. Two different proton transfer reaction mass spectrometers have been used in this study. One is the PTR-TOF 8000, which has an enhanced mass resolution (mm up to 8,000) and high sensitivity (~50 cps/ppbv). The second is the high-sensitivity PTR-MS, which has an improved limit of detection of about several hundreds of parts per quadrillion by volume and is coupled with a direct aqueous injection device. These instruments have been successfully used to identify and monitor the solid explosive 2,4,6-trinitrotoluene (TNT) by analysing on the one hand the headspace above small quantities of samples at room temperature and from trace quantities not visible to the naked eye placed on surfaces (also demonstrating the usefulness of a simple pre-concentration and thermal desorption technique) and by analysing on the other hand trace compounds in water down to a level of about 100 pptw. The ability to identify even minute amounts of threat compounds, such as explosives, particularly within a complex chemical environment, is vital to the fight against crime and terrorism and is of paramount importance for the appraisal of the fate and harmful effects of TNT at marine ammunition dumping sites and the detection of buried antipersonnel and antitank landmines.

Figure

Detecting TNT vapour with a high resolution PTR-TOF

Keywords

PTR-MS Trace compound detection Explosives TNT Direct aqueous injection 

Notes

Acknowledgements

CAM wishes to acknowledge the EPSRC (EP/E027571/1). Work was partially supported by the Leopold Franzens Universität, Innsbruck, the Ionicon Analytik GmbH, Innsbruck, the FWF and FFG, Wien and the European Commission, Brussels. FP acknowledges the support of the Community under a Marie Curie Industry-Academia Partnership and Pathways (Grant Agreement Number 218065).

References

  1. 1.
    Committee on Assessment of Security Technologies for Transportation, National Materials Advisory Board, Division of Engineering and Physical Sciences, National Research Council (2004) Opportunities to improve airport passenger screening with mass spectrometry. National Academic Press, WashingtonGoogle Scholar
  2. 2.
    Zolfagharifard E (2010) The engineer. London, UK. http://www.theengineer.co.uk/news/, accessed January 2010
  3. 3.
    Rodgers JD, Bunce NJ (2001) Water Res 35:2101–2111CrossRefGoogle Scholar
  4. 4.
    Eiceman GA, Karpas Z (2005) Ion mobility spectrometry, 2nd edn. Taylor and Francis, Boca RatonCrossRefGoogle Scholar
  5. 5.
    Watts P (1991) Anal Proc 28:328–339Google Scholar
  6. 6.
    Jordan A, Haidacher S, Hanel G, Hartungen E, Märk L, Seehauser H, Schottkowsky R, Sulzer P, Märk TD (2009) Int J Mass Spectrom 286:122–128CrossRefGoogle Scholar
  7. 7.
    Petersson F, Sulzer P, Mayhew CA, Watts P, Jordan A, Märk L, Märk TD (2009) Rapid Commun Mass Spectrom 23:3875–3880CrossRefGoogle Scholar
  8. 8.
    Mayhew CA, Sulzer P, Petersson F, Haidacher S, Jordan A, Märk L, Watts P, Märk TD (2010) Int J Mass Spectrom 289:58–63CrossRefGoogle Scholar
  9. 9.
    Jürschik S, Tani A, Sulzer P, Haidacher S, Jordan A, Schottkowsky R, Hartungen E, Hanel G, Seehauser H, Märk L, Märk TD (2009) Int J Mass Spectrom 289:173–176Google Scholar
  10. 10.
    Jordan A, Haidacher S, Hanel G, Hartungen E, Herbig J, Märk L, Schottkowsky R, Seehauser H, Sulzer P, Märk TD (2009) Int J Mass Spectrom 286:32–38CrossRefGoogle Scholar
  11. 11.
    Alexander M, Boscaini E, Lindinger W, Märk TD (2003) Int J Mass Spectrom 223–224:763–770Google Scholar
  12. 12.
    Boscaini E, Alexander M, Prazeller P, Märk TD (2004) Int J Mass Spectrom 239:171–177CrossRefGoogle Scholar
  13. 13.
    Simmons MS, Zepp RG (1986) Water Res 20:899–904CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • S. Jürschik
    • 1
  • P. Sulzer
    • 1
  • F. Petersson
    • 1
  • C. A. Mayhew
    • 2
  • A. Jordan
    • 1
  • B. Agarwal
    • 3
  • S. Haidacher
    • 1
  • H. Seehauser
    • 1
  • K. Becker
    • 4
  • T. D. Märk
    • 1
    • 3
  1. 1.Ionicon Analytik Gesellschaft m.b.H.InnsbruckAustria
  2. 2.Molecular Physics Group, School of Physics and AstronomyUniversity of BirminghamEdgbaston, BirminghamUK
  3. 3.Institut für Ionenphysik und Angewandte PhysikLeopold Franzens Universität InnsbruckInnsbruckAustria
  4. 4.Department of PhysicsPolytechnic Institute of New York UniversityBrooklynUSA

Personalised recommendations