Analytical and Bioanalytical Chemistry

, Volume 399, Issue 8, pp 2597–2622 | Cite as

Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications

  • K. P. LawEmail author
  • James R. Larkin


Although laser desorption mass spectrometry was introduced in the 1960s, the potential of laser mass spectrometry was not realised until the introduction of matrix-assisted laser desorption/ionisation (MALDI) in the 1980s. The technique relies on light-absorbing compounds called matrices that are co-crystallised with the analyte to achieve high ionisation and desorption efficiencies. MALDI offers a lot of advantages and is an indispensable tool in macromolecule analysis. However, the presence of the matrix also produces a high chemical background in the region below m/z 700 in the mass spectrum. Surface-assisted laser desorption/ionisation (SALDI) substitutes the chemical matrix of MALDI for an active surface, which means that matrix interference can be eliminated. SALDI mass spectrometry has evolved in recent years into a technique with great potential to provide insight into many of the challenges faced in modern research, including the growing interest in “omics” and the demands of pharmaceutical science. A great variety of materials have been reported to work in SALDI. Examples include a number of nanomaterials and surfaces. The unique properties of nanomaterials greatly facilitate analyte desorption and ionisation. This article reviews recent advances made in relation to carbon- and semiconductor-based SALDI strategies. Examples of their environmental, chemical and biomedical applications are discussed with the aim of highlighting progression in the field and the robustness of the technique, as well as to evaluate the strengths and weaknesses of individual approaches. In addition, this article describes the physical and chemical processes involved in SALDI and explains how the unique physical and electronic properties of nanostructured surfaces allow them to substitute for the matrix in energy transfer processes.


SALDI DIOS NALDI Nanomaterial Laser mass spectrometry 


  1. 1.
    Sunner J, Dratz E, Chen Y-C (1995) Anal Chem 67:4335–4342Google Scholar
  2. 2.
    Han M, Sunner J (2000) J Am Soc Mass Spectrom 11:644–649Google Scholar
  3. 3.
    Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T (1988) Rapid Commun Mass Spectrom 2:151–153Google Scholar
  4. 4.
    Zhang Q, Zou H, Guo Z, Zhang Q, Chen X, Ni J (2001) Rapid Commun Mass Spectrom 15:217–223Google Scholar
  5. 5.
    Hoang TT, Chen Y, May SW, Browner RF (2004) Anal Chem 76:2062–2070Google Scholar
  6. 6.
    Peterson DS (2007) Mass Spectrom Rev 26:19–34Google Scholar
  7. 7.
    Pan C, Xu S, Zhou H, Fu Y, Ye M, Zou H (2007) Anal Bioanal Chem 387:193–204Google Scholar
  8. 8.
    Cohen L, Go EP, Siuzdak G (2007) Small-molecule desorption/ionization mass analysis. In: Hillenkamp F, Peter-Katalinić J (eds) MALDI MS: a practical guide to instrumentation, methods and applications, 1st edn. Wiley-VCH, WeinheimGoogle Scholar
  9. 9.
    Law KP (2010) Int J Mass Spectrom 290:47–59Google Scholar
  10. 10.
    Law KP (2010) Int J Mass Spectrom 290:72–84Google Scholar
  11. 11.
    Kang M-J, Pyun J-C, Lee J-C, Choi Y-J, Park J-H, Park J-G, Lee J-G, Choi H-J (2005) Rapid Commun Mass Spectrom 19:3166–3170Google Scholar
  12. 12.
    Daniels RH, Dikler S, Li E, Stacey C (2008) J Assn Lab Automation 13:314–321Google Scholar
  13. 13.
    IUPAC (2004) Project: Standard definitions of terms relating to mass spectrometry. Accessed 23 April 2010
  14. 14.
    Guo Z, Ganawi A, Liu Q, He L (2006) Anal Bioanal Chem 384:584–592Google Scholar
  15. 15.
    Iijima S (1991) Nature 354:56–58Google Scholar
  16. 16.
    Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba DN, Yumura M, Hata K (2009) Proc Natl Acad Sci USA 106:6044–6047Google Scholar
  17. 17.
    Shin SJ, Choi D-W, Kwak H-S, Lim GI, Choi YS (2006) Bull Korean Chem Soc 27:581–583Google Scholar
  18. 18.
    Dattelbaum AM, Iyer S (2006) Expert Rev Proteomics 3:153–161Google Scholar
  19. 19.
    Najam-ul-Haq M, Rainer M, Szabó Z, Vallant R, Huck CW, Bonn GK (2007) J Biochem Biophys Methods 70:319–328Google Scholar
  20. 20.
    Xu S, Li Y, Zou H, Qiu J, Guo Z, Guo B (2003) Anal Chem 75:6191–6195Google Scholar
  21. 21.
    Pan C, Xu S, Zou H, Guo Z, Zhang Y, Guo B (2004) J Am Soc Mass Spectrom 16:263–270Google Scholar
  22. 22.
    S-f Ren L, Zhang Z-h Cheng, Guo Y-l (2005) J Am Soc Mass Spectrom 16:333–339Google Scholar
  23. 23.
    Ren S-f, Guo Y-l (2005) Rapid Commun Mass Spectrom 19:255–260Google Scholar
  24. 24.
    Pan C, Xu S, Hu L, Su X, Ou J, Zou H, Guo Z, Zhang Y, Guo B (2005) J Am Soc Mass Spectrom 16:883–892Google Scholar
  25. 25.
    Chen W-Y, Wang L-S, Chiu H-T, Chen Y-C, Lee C-Y (2004) J Am Soc Mass Spectrom 15:1629–1635Google Scholar
  26. 26.
    Tang H-W, Ng K-M, Lu W, Che C-M (2009) Anal Chem 81:4720–4729Google Scholar
  27. 27.
    Alimpiev S, Nikiforov S, Karavanskii V, Minton T, Sunner J (2001) J Chem Phys 115:1891–1901Google Scholar
  28. 28.
    Shariatgorji M, Amini N, Thorsen G, Crescenzi C, Ilag LL (2008) Anal Chem 80:5515–5523Google Scholar
  29. 29.
    Amini N, Shariatgorji M, Thorsén G (2009) J Am Soc Mass Spectrom 20:1207–1213Google Scholar
  30. 30.
    Amini N, Shariatgorji M, Crescenzi C, Thorsén G (2010) Anal Chem 82:290–296Google Scholar
  31. 31.
    Ugarov MV, Egan T, Khabashesku DV, Schultz JA, Peng H, Khabashesku VN, Furutani H, Prather KS, Wang HWJ, Jackson SN, Woods AS (2004) Anal Chem 76:6734–6742Google Scholar
  32. 32.
    Wei J, Buriak J, Siuzdak G (1999) Nature 399:243–246Google Scholar
  33. 33.
    Lewis W, Shen Z, Finn MG, Siuzdak G (2003) Int J Mass Spectrom 226:107–116Google Scholar
  34. 34.
    Nordstrom A, He L, Siuzdak G (2007) Desorption/ionization on silicon (DIOS). In: Gross ML, Caprioli RM (eds) The encyclopedia of mass spectrometry volume 6: molecular ionization methods, 1st edn. Elsevier, AmsterdamGoogle Scholar
  35. 35.
    Shen Z, Thomas JJ, Averbuj C, Broo KM, Engelhard M, Crowell JE, Finn MG, Siuzdak G (2001) Anal Chem 73:612–619Google Scholar
  36. 36.
    Stewart MP, Buriak JM (2000) Adv Mater 12:859–869Google Scholar
  37. 37.
    Schmeltzer JM, Buriak JM (2004) Recent developments in the chemistry and chemical applications of porous silicon. In: Rao CNR, Müller A, Cheetham AK (eds) The chemistry of nanomaterials: synthesis, properties and applications, vol 2. Wiley-VCH, WeinheimGoogle Scholar
  38. 38.
    Canham LT (1990) Appl Phys Lett 57:1046–1048Google Scholar
  39. 39.
    Northen TR, Yanes O, Northen MT, Marrinucci D, Uritboonthai W, Apon J, Golledge SL, Nordstrom A, Siuzdak G (2007) Nature 449:1033–1036Google Scholar
  40. 40.
    Kalkan AK, Bae S, Li H, Hayes DJ, Fonash SJ (2000) J Appl Phys 88:555–561Google Scholar
  41. 41.
    Kalkan AK, Henry MR, Li H, Cuiffi JD, Hayes DJ, Palmer C, Fonash SJ (2005) Nanotechnology 16:1383–1391Google Scholar
  42. 42.
    Seino T, Sato H, Yamamoto A, Nemoto A, Torimura M, Tao H (2007) Anal Chem 79:4827–4832Google Scholar
  43. 43.
    Sato H, Nemoto A, Yamamoto A, Tao H (2009) Rapid Commun Mass Spectrom 23:603–610Google Scholar
  44. 44.
    Finkel NH, Prevo BG, Velev OD, He L (2005) Anal Chem 77:1088–1095Google Scholar
  45. 45.
    Xiao Y, Retterer ST, Thomas DK, Tao J-Y, He L (2009) J Phys Chem C 113:3076–3083Google Scholar
  46. 46.
    Go EP, Apon JV, Luo G, Saghatelian A, Daniels RH, Sahi V, Dubrow R, Cravatt BF, Vertes A, Siuzdak G (2005) Anal Chem 77:1641–1646Google Scholar
  47. 47.
    Luo G, Chen Y, Daniels H, Dubrow R, Vertes A (2006) J Phys Chem B 110:13381–13386Google Scholar
  48. 48.
    Coffinier Y, Janel S, Addad A, Blossey R, Gengembre L, Payen E, Boukherroub R (2007) Langmuir 23:1608–1611Google Scholar
  49. 49.
    Hayes DJ (2004) Micrototal analysis system for enzymatic drug metabolism and analysis (Ph.D. thesis). Department of Engineering Science and Mechanics, Pennsylvania State University, University ParkGoogle Scholar
  50. 50.
    Okuno S, Arakawa R, Okamoto K, Matsui Y, Seki S, Kozawa T, Tagawa S, Wada Y (2005) Anal Chem 77:5364–5369Google Scholar
  51. 51.
    Shin JH, Song JY, Park HM (2009) Mater Lett 63:145–147Google Scholar
  52. 52.
    Shin WJ, Shin JH, Song JY, Han SY (2010) J Am Soc Mass Spectrom 21:989–92Google Scholar
  53. 53.
    Chen Y, Vertes A (2006) Anal Chem 78:5835–5844Google Scholar
  54. 54.
    Chen Y, Luo G, Diao J, Chornoguz O, Reeves M, Vertes A (2007) J Phys Conf Ser 59:548–554Google Scholar
  55. 55.
    Sainiemi L, Keskinen H, Aromaa M, Luosujärvi L, Grigoras K, Kotiaho T, Mäkelä JM, Franssila S (2007) Nanotechnology 18:505303–505310Google Scholar
  56. 56.
    Jokinen V, Aura S, Luosujärvi L, Sainiemi L, Kotiaho T, Franssila S, Baumann M (2009) J Am Soc Mass Spectrom 20:1723–1730Google Scholar
  57. 57.
    Wen X, Dagan S, Wysocki VH (2007) Anal Chem 79:434–444Google Scholar
  58. 58.
    Dagan S, Hua Y, Boday DJ, Somogyi A, Wysocki RJ, Wysocki VH (2009) Int J Mass Spectrom 283:200–205Google Scholar
  59. 59.
    Watanabe T, Kawasaki H, Yonezawa T, Arakawa R (2008) J Mass Spectrom 43:1063–1071Google Scholar
  60. 60.
    Dattelbaum AM, Hicks RK, Shelley J, Koppisch AT, Iyer S (2008) Micropor Mesopor Mat 114:193–200Google Scholar
  61. 61.
    Shariatgorji M, Amini N, Ilag L (2009) J Nanopart Res 11:1509–1512Google Scholar
  62. 62.
    Li J, Lu C, Hu XK, Yang X, Loboda AV, Lipson RH (2009) Int J Mass Spectrom 285:137–142Google Scholar
  63. 63.
    Gl Piret, Drobecq H, Coffinier Y, Melnyk O, Boukherroub R (2010) Langmuir 26:1354–1361Google Scholar
  64. 64.
    Shenar N, Cantel S, Martinez J, Enjalbal C (2009) Rapid Commun Mass Spectrom 23:2371–2379Google Scholar
  65. 65.
    Guénin E, Lecouvey M, Hardouin J (2009) Rapid Commun Mass Spectrom 23:1395–1400Google Scholar
  66. 66.
    Li X, Bohn PW (2000) Appl Phys Lett 77:2572–2574Google Scholar
  67. 67.
    Kruse RA, Li X, Bohn PW, Sweedler JV (2001) Anal Chem 73:3639–3645Google Scholar
  68. 68.
    Li Q, Ricardo A, Benner SA, Winefordner JD, Powell DH (2005) Anal Chem 77:4503–4508Google Scholar
  69. 69.
    Tsao C-W, Kumar P, Liu J, DeVoe DL (2008) Anal Chem 80:2973–2981Google Scholar
  70. 70.
    Skipp P, Farooqui M, Pickard K, Li Y, Evans AGR, O’Connor CD (2004) Expanding the information window to increase proteomic sensitivity and selectivity. In: Valdes JJ, Sekowski JW (eds) Proceedings of NATO Advanced Workshop on Proteomics and Toxicogenomics. IOS Press, AmsterdamGoogle Scholar
  71. 71.
    Li Q (2005) Exploring desorption/ionization on porous silicon mass spectrometry and its applications (Ph.D. thesis). Department of Chemistry, University of Florida, GainesvilleGoogle Scholar
  72. 72.
    Tsao C-W (2008) Interfacing microfluidic bioanalysis with high sensitivity mass spectrometry (Ph.D. dissertation). Department of Mechanical Engineering, University of Maryland, College ParkGoogle Scholar
  73. 73.
    Piret G, Coffinier Y, Roux C, Melnyk O, Boukherroub R (2008) Langmuir 24:1670–1672Google Scholar
  74. 74.
    Alimpiev S, Grechnikov A, Sunner J, Karavanskii V, Simanovsky Y, Zhabin S, Nikiforov S (2008) J Chem Phys 128:014711–014719Google Scholar
  75. 75.
    Hanley L, Kornienko O, Ada ET, Fuoco E, Trevor JL (1999) J Mass Spectrom 34:705–723Google Scholar
  76. 76.
    Zhu X (1994) Annu Rev Phys Chem 45:113–144Google Scholar
  77. 77.
    Knochenmuss R (2002) J Mass Spectrom 37:867–877Google Scholar
  78. 78.
    Knochenmuss R (2006) Analyst 131:966–986Google Scholar
  79. 79.
    Kolasinski K (2002) Surface science: foundations of catalysis and nanoscience. Wiley, ChichesterGoogle Scholar
  80. 80.
    Stewart MP, Buriak JM (2001) J Am Chem Soc 123:7821–7830Google Scholar
  81. 81.
    Budimir N, Fournier F, Blais J-C, Wind F, Tabet J-C (2003) Study of fatty acids and sulfonic acids by desorption/ionization on silicon mass spectrometry. In: 51st Annu Conf ASMS, Montreal, Canada, 8–12 June 2003Google Scholar
  82. 82.
    Okuno S, Arakawa R, Wada Y (2004) J Mass Spectrom Soc Jpn 52:13–20Google Scholar
  83. 83.
    Okuno S, Nakano M, G-e Matsubayashi, Arakawa R, Wada Y (2004) Rapid Commun Mass Spectrom 18:2811–2817Google Scholar
  84. 84.
    Budimir N, Blais J-C, Fournier F, Tabet J-C (2007) J Mass Spectrom 42:42–48Google Scholar
  85. 85.
    Umezu I, Kohno K, Aoki K, Kohama Y, Sugimura A, Inada M (2002) Vacuum 66:453–456Google Scholar
  86. 86.
    Nayak R, Knapp DR (2007) Anal Chem 79:4950–4956Google Scholar
  87. 87.
    Xu D, Guo G, Gui L, Tang Y, Zhang B, Qin G (1998) Electrochem Solid-State Lett 1:227–229Google Scholar
  88. 88.
    Xu D, Guo G, Gui L, Tang Y, Zhang BR, Qin GG (1999) J Phys Chem B 103:5468–5471Google Scholar
  89. 89.
    Xu D, Guo G, Gui L, Tang Y, Qin GG (2000) Pure Appl Chem 72:237–243Google Scholar
  90. 90.
    Cullis AG, Canham LT, Calcott PDJ (1997) J Appl Phys 82:909–965Google Scholar
  91. 91.
    Palaria A, Klimeck G, Strachan A (2008) Electronic structure and transport in silicon nano-structures with non-ideal bonding environments. TECHCON, AustinGoogle Scholar
  92. 92.
    Maus M, Ganteför G, Eberhardt W (2000) Appl Phys A 70:535–539Google Scholar
  93. 93.
    Kottmann JP, Martin OJF, Smith DR, Schultz S (2000) Opt Express 6:213–219Google Scholar
  94. 94.
    Northen TR, Woo HK, Northen MT, Nordström A, Uritboonthail W, Turner KL, Siuzdak G (2007) J Am Soc Mass Spectrom 18:1945–1949Google Scholar
  95. 95.
    Wada Y, Yanagishita T, Masuda H (2007) Anal Chem 79:9122–9127Google Scholar
  96. 96.
    Luo G, Chen Y, Siuzdak G, Vertes A (2005) J Phys Chem B 109:24450Google Scholar
  97. 97.
    Nordstrom A, Apon JV, Uritboonthai W, Go EP, Siuzdak G (2006) Anal Chem 78:272–278Google Scholar
  98. 98.
    Vertes A (2007) Soft laser desorption ionization—MALDI, DIOS and nanostructures. In: Phipps CR (ed) Laser ablation and its applications. Springer, New YorkGoogle Scholar
  99. 99.
    Gloria R, Lichtenberg J, Hierlemann A, Poulikakos D (2005) Micro platform for investigation of explosive vaporization in micro enclosures. In: 9th Int Conf on Miniaturized Systems for Chemistry and Life Sciences (μTAS), Boston, MA, USA, 9–13 Oct 2005Google Scholar
  100. 100.
    Huwe A, Kremer F, Behrens P, Schwieger W (1999) Phys Rev Lett 82:2338–2341Google Scholar
  101. 101.
    Bellissent-Funel M-C, Lal J, Bosio L (1993) J Chem Phys 98:4246–4252Google Scholar
  102. 102.
    Bellissent-Funel M-C, Chen SH, Zanotti J-M (1995) Phys Rev E 51:4558–4569Google Scholar
  103. 103.
    Guégan R, Morineau D, Loverdo C, Béziel W (2006) Phys Rev E 73:011707Google Scholar
  104. 104.
    Chen Y, Chen H, Aleksandrov A, Orlando TM (2008) J Phys Chem C 112:6953–6960Google Scholar
  105. 105.
    King AK, Bellm SM, Hammond CJ, Reid KL, Towrie M, Matousek P (2005) Mol Phys 103:1821–1827Google Scholar
  106. 106.
    Budimir N, Lesage D, Naban-Maillet J, Fournier F, Blais J-C, Wind F, Vékey K, Tabet J-C (2004) Internal energy of ions produced by desorption/ionisation on porous silicon (DIOS). 52nd Annu Conf ASMS, Nashville, TN, USA, 24–27 May 2004Google Scholar
  107. 107.
    Rosenstock HM, Wallenstein MB, Wahrhaftig AL, Eyring H (1952) Proc Natl Acad Sci USA 38:667–678Google Scholar
  108. 108.
    Go EP, Uritboonthai W, Apon JV, Trauger SA, Nordstrom A, O’Maille G, Brittain SM, Peters EC, Siuzdak G (2007) J Proteome Res 6:1492–1499Google Scholar
  109. 109.
    Trauger SA, Go EP, Shen Z, Apon JV, Compton BJ, Bouvier ESP, Finn MG, Siuzdak G (2004) Anal Chem 76:4484–4489Google Scholar
  110. 110.
    Thomas JJ, Blackledge RD, Siuzdak G (2001) Anal Chim Acta 442:183–190Google Scholar
  111. 111.
    Shen ZX, Thomas JJ, Siuzdak G, Blackledge RD (2004) J Forensic Sci 49:1028–1035Google Scholar
  112. 112.
    Pihlainen K, Grigoras K, Franssila S, Ketola R, Kotiaho T, Kostiainen R (2005) J Mass Spectrom 40:539–545Google Scholar
  113. 113.
    Kraj A, Świst M, Strugala A, Parczewski A, Silberringa J (2006) Eur J Mass Spectrom 12:253–259Google Scholar
  114. 114.
    Kraj A, Jarzebinska J, Gorecka-Drzazga A, Dziuban J, Silberring J (2006) Rapid Commun Mass Spectrom 20:1969–1972Google Scholar
  115. 115.
    Bergquist J, Silberring J (1998) Rapid Commun Mass Spectrom 12:683–688Google Scholar
  116. 116.
    Okuno S, Wada Y (2005) J Mass Spectrom 40:1000–1004Google Scholar
  117. 117.
    Finkel NH (2005) Surface-assisted laser desorption/ionization-mass spectrometry (SALDI-MS) of controlled nanofeatures and the associated thermal properties (MSci thesis). Department of Chemistry, North Carolina State University, RaleighGoogle Scholar
  118. 118.
    Laiko VV, Taranenko NI, Berkout VD, Musselman BD, Doroshenko VM (2002) Rapid Commun Mass Spectrom 16:1737–1742Google Scholar
  119. 119.
    Thomas JJ, Shen Z, Crowell JE, Finn MG, Siuzdak G (2001) Proc Natl Acad Sci USA 98:4932–4937Google Scholar
  120. 120.
    Go EP, Prenni JE, Wei J, Jones A, Hall SC, Witkowska HE, Shen Z, Siuzdak G (2003) Anal Chem 75:2504–2506Google Scholar
  121. 121.
    Kinumi T, Shimomae Y, Arakawa R, Tatsu Y, Shigeri Y, Yumoto N, Niki E (2006) J Mass Spectrom 41:103–112Google Scholar
  122. 122.
    Go EP, Wikoff WR, Shen Z, O'Maille G, Morita H, Conrads TP, Nordstrom A, Trauger SA, Uritboonthai W, Lucas DA, Chan KC, Veenstra TD, Lewicki H, Oldstone MB, Schneemann A, Siuzdak G (2006) J Proteome Res 5:2405–2416Google Scholar
  123. 123.
    Liesener A, Karst U (2005) Anal Bioanal Chem 382:1451–1464Google Scholar
  124. 124.
    Shen Z, Go EP, Gamez A, Apon JV, Fokin V, Greig M, Ventura M, Crowell JE, Blixt O, Paulson JC, Stevens R, Finn MG, Siuzdak G (2004) ChemBioChem 5:921–927Google Scholar
  125. 125.
    Wall DB, Finch JW, Cohen SA (2004) Rapid Commun Mass Spectrom 18:1482–1486Google Scholar
  126. 126.
    Steenwyk RC, Hutzler JM, Sams J, Shen Z, Siuzdak G (2006) Rapid Commun Mass Spectrom 20:3717–3722Google Scholar
  127. 127.
    Northen TR, Lee J-C, Hoang L, Raymond J, Hwang D-R, Yannone SM, Wong C-H, Siuzdak G (2008) Proc Natl Acad Sci USA 105:3678–3683Google Scholar
  128. 128.
    Nichols KP, Azoz S, Gardeniers HJGE (2008) Anal Chem 80:8314–8319Google Scholar
  129. 129.
    Zou H, Zhang Q, Guo Z, Guo B, Zhang Q, Chen X (2002) Angew Chem Int Ed 41:646–648Google Scholar
  130. 130.
    Hu L, Xu S, Pan C, Zou H, Jiang G (2007) Rapid Commun Mass Spectrom 21:1277–1281Google Scholar
  131. 131.
    Xu S, Pan C, Hu L, Zhang Y, Guo Z, Li X, Zou H (2004) Electrophoresis 25:3669–3676Google Scholar
  132. 132.
    Hollis JM, Lovas FJ, Jewell PR (2000) Astrophys J 540:L107–L110Google Scholar
  133. 133.
    Burke DJ, Brown WA (2010) Phys Chem Chem Phys 12:5947–5969Google Scholar
  134. 134.
    Vaidyanathan S, Jones DG, Ellis J, Jenkins TE, Dunn W, Hayes A, Burton N, Oliver S, Kell DB, Goodacre R (2005) Metabolomics 1:1–8Google Scholar
  135. 135.
    Allen J, Davey H, Broadhurst D, Heald J, Rowland J, Oliver S, Kell D (2003) Nat Biotechnol 21:692–696Google Scholar
  136. 136.
    Amantonico A, Flamigni L, Glaus R, Zenobi R (2009) Metabolomics 5:346–353Google Scholar
  137. 137.
    Gómez D, Fernández JA, Astigarraga E, Marcaide A, Azcárate S (2007) Phys State Solidi (c) 4:2185–2189Google Scholar
  138. 138.
    Miura D, Fujimura Y, Tachibana H, Wariishi H (2010) Anal Chem 82:498–504Google Scholar
  139. 139.
    Liu Q, Guo Z, He L (2007) Anal Chem 79:3535–3541Google Scholar
  140. 140.
    Liu Q, Xiao Y, Pagan-Miranda C, Chiu YM, He L (2009) J Am Soc Mass Spectrom 20:80–88Google Scholar
  141. 141.
    Liu Q, He L (2009) J Am Soc Mass Spectrom 20:2229–2237Google Scholar
  142. 142.
    Yanes O, Woo H-K, Northen TR, Oppenheimer SR, Shriver L, Apon J, Estrada MN, Potchoiba MJ, Steenwyk R, Manchester M, Siuzdak G (2009) Anal Chem 81:2969–2975Google Scholar
  143. 143.
    Patti GJ, Woo H-K, Yanes O, Shriver L, Thomas D, Uritboonthai W, Apon JV, Steenwyk R, Manchester M, Siuzdak G (2010) Anal Chem 82:121–128Google Scholar
  144. 144.
    Ifa DR, Wiseman JM, Song Q, Cooks RG (2007) Int J Mass Spectrom 259:8–15Google Scholar
  145. 145.
    Debois D, Brunelle A, Laprévote O (2007) Int J Mass Spectrom 260:115–120Google Scholar
  146. 146.
    Kawasaki H, Takahashi N, Fujimori H, Okumura K, Watanabe T, Matsumura C, Takemine S, Nakano T, Arakawa R (2009) Rapid Commun Mass Spectrom 23:3323–3332Google Scholar
  147. 147.
    Kawasaki H, Shimomae Y, Watanabe T, Arakawa R (2009) Colloid Surf A 347:220–224Google Scholar
  148. 148.
    Nguyen MT (2007) General and theoretical aspects of anilines. In: Rappoport Z (ed) The Chemistry of Anilines, Part 1 John Wiley & Sons, Chichester, West Sussex, UKGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Centre for Analytical Bioscience and Laboratory of Biophysics and Surface Analysis, School of PharmacyUniversity of NottinghamNottinghamUK
  2. 2.Clinical Sciences Research Institute, Warwick Medical SchoolUniversity of Warwick, University HospitalCoventryUK

Personalised recommendations