Analytical and Bioanalytical Chemistry

, Volume 398, Issue 3, pp 1249–1255 | Cite as

A simple method of surface functionalisation for immuno-specific immobilisation of proteins

  • R. P. Kengne-Momo
  • Y. L. Jeyachandran
  • A. Assaf
  • C. Esnault
  • P. Daniel
  • J. F. Pilard
  • M. J. Durand
  • F. Lagarde
  • E. Dongo
  • G. Thouand
Short Communication

Abstract

We present a new and advanced methodology, developed for surface functionalisation of gold and to study immobilisation of an immuno-specific system of proteins. A combination of electrochemical quartz crystal microbalance and Raman spectroscopy techniques allowed a complete understanding of the system starting from surface functionalisation and progressing to the functional structure analysis of immobilised proteins. A simple electrochemical procedure was formulated to prepare sulphonyl chloride terminated gold surfaces that form a strong sulphonamide bond with the receptor protein staphylococcal protein A (SpA). On the SpA grafted surfaces, the immobilisation of a human IgG and consecutive binding of an immuno-specific anti-human IgG was observed. The surface functional groups form a strong interaction with SpA without disturbing its functional properties. The native functional structure of SpA and also the IgGs was found to be retained in their immobilised state.

Keywords

Surface functionalisation Protein immobilisation Raman spectroscopy QCM 

Notes

Acknowledgement

The presented work was supported by the grant RMB–BIORAM booked by the Region des Pays de la Loire, Le conseil Général de la Vendée, La Ville de la Roche sur Yon.

References

  1. 1.
    Hutsebaut D, Vandroemme J, Heyrman J, Dawyndt P, Vandenabeele P, Moens L, de Vos P (2006) Raman microspectroscopy as an identification tool within the phylogenetically homogeneous ‘Bacillus subtilis’-group. Syst Appl Microbiol 29:650–660CrossRefGoogle Scholar
  2. 2.
    Ibelings MS, Maquelin K, Endtz HP, Bruining HA, Puppels GJ (2005) Rapid identification of Candida spp. in peritonitis patients by Raman spectroscopy. Clin Microbiol Infect 11:353–358CrossRefGoogle Scholar
  3. 3.
    Maquelin K, Kirschner C, Choo-Smith LP, Ngo-Thi NA, van Vreeswijk T, Stammler M, Endtz HP, Bruining HA, Naumann D, Puppels DJ (2003) Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J Clin Microbiol 41:324–329CrossRefGoogle Scholar
  4. 4.
    Yang H, Irudayaraj J (2003) Rapid detection of foodborne microorganisms on food surface using Fourier transform Raman spectroscopy. J Mol Struct 646:35–43CrossRefGoogle Scholar
  5. 5.
    Cai S, Singh BR (2004) A distinct utility of the amide III infrared band for secondary structure estimation of aqueous protein solutions using partial least squares methods. Biochemistry 43:2541–2549CrossRefGoogle Scholar
  6. 6.
    Jenkins AL, Larsen RA, Williams TB (2005) Characterization of amino acids using Raman spectroscopy. Spectrochim Acta A 61:1585–1594CrossRefGoogle Scholar
  7. 7.
    Tuma R (2005) Raman spectroscopy of proteins: from peptides to large assemblies. J Raman Spectrosc 36:307–319CrossRefGoogle Scholar
  8. 8.
    Paquin R, Colomban P (2007) Nanomechanics of single keratin fibres: a Raman study of the α-helix to β-sheet transition and the effect of water. J Raman Spectrosc 38:504–514CrossRefGoogle Scholar
  9. 9.
    Volden S, Zhu KZ, Nyström B, Glomm WR (2009) Use of cellulose derivatives on gold surfaces for reduced nonspecific adsorption of immunoglobulin G. Colloids Surf B Biointerfaces 72:266–271CrossRefGoogle Scholar
  10. 10.
    Limbut W, Kanatharana P, Mattiasson B, Asawatreratanakul P, Thavarungkul P (2006) A comparative study of capacitive immunosensors based on self-assembled monolayers formed from thiourea, thioctic acid, and 3-mercaptopropionic acid. Biosens Bioelectron 22:233–240CrossRefGoogle Scholar
  11. 11.
    Chen H, Lee M, Choi S, Kim J-H, Choi H-J, Kim S-H, Lee J, Koh K (2007) Comparative study of protein immobilization properties on calixarene monolayers. Sensors 7:1091–1107CrossRefGoogle Scholar
  12. 12.
    Kim H, Park JH, Cho I-H, Kim S-K, Park SH, Lee H (2009) Selective immobilization of proteins on gold dot arrays and characterization using chemical force microscopy. J Colloid Interface Sci 334:161–166CrossRefGoogle Scholar
  13. 13.
    Seth AK, Jay E (1980) A study of the efficiency and the problem of sulfonation of several condensing reagents and their mechanisms for the chemical synthesis of deoxyoligoribonucleotides. Nucleic Acids Res 8:5445–5460CrossRefGoogle Scholar
  14. 14.
    Sauerbrey G (1959) Verwendung von schwing-quarzen zur wagung dunner schichten und zur mikrowagung. Zeitchrift Phys 155:206CrossRefGoogle Scholar
  15. 15.
    Daniel Ph, Picart P, Bendriaa L, Sockalingum GD, Adt I, Charrier Th, Durand MJ, Ergan F, Manfait M, Thouand G (2008) Effects of toxic organotin compounds on bacteria investigated by micro-Raman spectroscopy. Spectrosc Lett 41:19–28CrossRefGoogle Scholar
  16. 16.
    Boyle TJ, Andrews NL, Alam TM, Tallant DR, Rodriguez MA, Ingersoll D (2005) Speciation in the AlCl3/SO2Cl2 catholyte system. Inorg Chem 44:5934–5940CrossRefGoogle Scholar
  17. 17.
    Lu Y, Chen J, Li F, Xue G (2001) Enhancing effect of chemically reduced gold on surface Raman scattering for organic sulfides chemisorbed on iron. J Raman Spectrosc 32:881–884CrossRefGoogle Scholar
  18. 18.
    Sjoholm I (1975) Protein A from Staphylococcus aureus: spectropolarimetric and spectrophotometric studies. Eur J Biochem 51:55–61CrossRefGoogle Scholar
  19. 19.
    Edwards HGM, Farwell DW, Williams AC, Barry BW, Rull F (1995) Novel spectroscopic deconvolution procedure for complex biological systems: vibrational components in the FT-Raman spectra of ice-man and contemporary skin. J Chem Soc Faraday Trans 91:3883–3887CrossRefGoogle Scholar
  20. 20.
    Naumann D (2001) FT-Infrared and FT-Raman spectroscopy in biomedical research. Appl Spectrosc Rev 36:239–298CrossRefGoogle Scholar
  21. 21.
    Overman SA, Thomas GJ Jr (1998) Novel vibrational assignments for proteins from Raman spectra of viruses. J Raman Spectrosc 29:23–29CrossRefGoogle Scholar
  22. 22.
    De Gelder J, De Gussem K, Vandenabeele P, Moens L (2008) Reference database of Raman spectra of biological molecules. J Raman Spectrosc 38:1133–1147CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • R. P. Kengne-Momo
    • 1
    • 2
  • Y. L. Jeyachandran
    • 1
  • A. Assaf
    • 3
  • C. Esnault
    • 4
  • P. Daniel
    • 1
  • J. F. Pilard
    • 4
  • M. J. Durand
    • 3
  • F. Lagarde
    • 1
    • 5
  • E. Dongo
    • 2
  • G. Thouand
    • 3
  1. 1.Laboratoire PEC, UMR CNRS 6087Université du MaineLe MansFrance
  2. 2.Laboratoire de Chimie OrganiqueUniversité de Yaoundé IYaoundéCameroon
  3. 3.Université de Nantes, UMR CNRS GEPEA 6144, IUT Génie BiologiqueLa Roche sur YonFrance
  4. 4.Laboratoire UCO2M, UMR CNRS 6011Université du MaineLe MansFrance
  5. 5.Université de Nantes, IUT Génie BiologiqueLa Roche sur YonFrance

Personalised recommendations