Analytical and Bioanalytical Chemistry

, Volume 398, Issue 3, pp 1357–1366 | Cite as

Cardiolipin, a key component to mimic the E. coli bacterial membrane in model systems revealed by dynamic light scattering and steady-state fluorescence anisotropy

  • S. Lopes
  • C. S. Neves
  • P. Eaton
  • P. Gameiro
Original Paper


The phase transition temperatures of several lipidic systems were determined using two different techniques: dynamic light scattering (DLS) and steady-state fluorescence anisotropy, using two fluorescent probes that report different membrane regions (TMA-DPH and DPH). Atomic force microscopy (AFM) was used as a complementary technique to characterize different lipid model systems under study. The systems were chosen due to the increased interest in bacterial membrane studies due to the problem of antibiotic drug resistance. The simpler models studied comprised of mixtures of POPE and POPG lipids, which form a commonly used model system for Escherichia coli membranes. Given the important role of cardiolipin (CL) in natural membranes, a ternary model system, POPE/POPG/CL, was then considered. The results obtained in these mimetic systems were compared with those obtained for the natural systems E. coli polar and total lipid extract. DLS and fluorescence anisotropy are not commonly used to study lipid phase transitions, but it was shown that they can give useful information about the thermotropic behaviors of model systems for bacterial membranes. These two techniques provided very similar results, validating their use as methods to measure phase transitions in lipid model systems. The temperature transitions obtained from these two very different techniques and the AFM results clearly show that cardiolipin is a fundamental component to mimic bacteria membranes. The results suggest that the less commonly used ternary system is a considerably better mimic for natural E. coli membranes than binary lipid mixture.


AFM images and fluorescence anistrotropy profile of fluorescent probe inserted in different lipids used as mimetic systems for E. coli. The techniques confirm that cardiolipin plays an important role in mimicking the E. coli membrane.


Lipid membranes Cardiolipin Dynamic light scattering Fluorescence anisotropy Atomic force microscopy 



Dynamic light scattering


Atomic force microscopy












Differential scanning calorimetry


Nuclear magnetic resonance


Fourier transform infrared spectroscopy






N-(2-Hydroxyethyl) piperazine-N′-ethanesulfonic acid


Multilamellar vesicles


Large unilamellar vesicle



Partial financial support for this work was provided by EU project Translocation MRTN-CT-2005-019335. S. Lopes and C. Neves thank FCT for a SFRH/BPD/34262/2006 and SFRH/BD/61137/2009 fellowship, respectively.


  1. 1.
    Reichow SL, Gonen T (2009) Curr Opin Struct Biol 19:560–565CrossRefGoogle Scholar
  2. 2.
    Dowhan W, Bogdanov M (2009) Annu Rev Biochem 78:515–540CrossRefGoogle Scholar
  3. 3.
    Bogdanov M, Xie J, Dowhan W (2009) J Biol Chem 284:9637–9641CrossRefGoogle Scholar
  4. 4.
    Lemmon MA (2008) Nat Rev Mol Cell Biol 9:99–111CrossRefGoogle Scholar
  5. 5.
    Mileykovskaya E, Dowhan W (2009) Biochim Biophys Acta Biomembr 1788:2084–2091CrossRefGoogle Scholar
  6. 6.
    Marsh D (2009) Biochim Biophys Acta Biomembr 1788:2114–2123CrossRefGoogle Scholar
  7. 7.
    Langosch D, Hofmann M, Ungermann C (2007) Cell Mol Life Sci 64:850–864CrossRefGoogle Scholar
  8. 8.
    Hurley JH (2006) Biochim Biophys Acta Mol Cell Biol L 1761:805–811Google Scholar
  9. 9.
    Kinnunen P (1991) Chem Phys Lipids 57:375–399CrossRefGoogle Scholar
  10. 10.
    Kinnunen P, Mouritsen O (1994) Chem Phys Lipids 73:181–207CrossRefGoogle Scholar
  11. 11.
    Mouritsen OG, Kinnunen PKJ (1996) In: Merz KM, Roux B (eds) Biological membranes. Birkhäuser, Boston, pp 463–502Google Scholar
  12. 12.
    Epand R (1997) Biochem Soc Trans 25:1073–1079Google Scholar
  13. 13.
    Kinnunen P (2000) Cell Physiol Biochem 10:243–250CrossRefGoogle Scholar
  14. 14.
    Tocanne JF, Cézanne L, Lopez A, Piknova B, Schram V, Tournier JF, Welby M (1994) Chem Phys Lipids 73:139–158CrossRefGoogle Scholar
  15. 15.
    Lewis RN MD, McElhaney RN (2007) Methods Mol Biol 400:171–195CrossRefGoogle Scholar
  16. 16.
    Nicolini C, Kraineva J, Khurana M, Periasamy N, Funari SS, Winter R (2006) Biochim Biophys Acta Biomembr 1758:248–258CrossRefGoogle Scholar
  17. 17.
    Halling KK, Ramstedt B, Nyström JH, Slotte JP, Nyholm TKM (2008) Biophys J 95:3861–3871CrossRefGoogle Scholar
  18. 18.
    Michel N, Fabiano A-S, Polidori A, Jack R, Pucci B (2006) Chem Phys Lipids 139:11–19CrossRefGoogle Scholar
  19. 19.
    Tarafdar PK, Swamy MJ (2010) Biochim Biophys Acta Biomembr 1798:872–881CrossRefGoogle Scholar
  20. 20.
    Goñi FM, Alonso A, Bagatolli LA, Brown RE, Marsh D, Prieto M, Thewalt JL (2008) Biochim Biophys Acta Mol Cell Biol L 1781:665–684Google Scholar
  21. 21.
    Lopes SCDN, Goormaghtigh E, Costa Cabral BJ, Castanho MARB (2004) J Am Chem Soc 126:5396–5402CrossRefGoogle Scholar
  22. 22.
    Bensikaddour H, Snoussi K, Lins L, Van Bambeke F, Tulkens PM, Brasseur R, Goormaghtigh E, Mingeot-Leclercq MP (2008) Biochim Biophys Acta Biomembr 1778:2535–2543CrossRefGoogle Scholar
  23. 23.
    Arouri A, Dathe M, Blume A (2009) Biochim Biophys Acta Biomembr 1788:650–659CrossRefGoogle Scholar
  24. 24.
    Pagès J, James C, Winterhalter M (2008) Nat Rev Micro 6:893–903CrossRefGoogle Scholar
  25. 25.
    Hamill P, Brown K, Jenssen H, Hancock REW (2008) Curr Opin Biotechnol 19:628–636CrossRefGoogle Scholar
  26. 26.
    Epand RM, Epand RF (2009) Biochim Biophys Acta Biomembr 1788:289–294CrossRefGoogle Scholar
  27. 27.
    Tossi A, Sandri L, Giangaspero A (2000) Pept Sci 55:4–30Google Scholar
  28. 28.
    Bhunia A, Domadia PN, Torres J, Hallock KJ, Ramamoorthy A, Bhattacharjya S (2010) J Biol Chem 285:3883–3895CrossRefGoogle Scholar
  29. 29.
    Shai Y (2002) Pept Sci 66:236–248Google Scholar
  30. 30.
    Avanti Polar Lipids, Inc. (2010)
  31. 31.
    Murzyn K, Róg T, Pasenkiewicz-Gierula M (2005) Biophys J 88:1091–1103CrossRefGoogle Scholar
  32. 32.
    Lohner K, Latal A, Degovics G, Garidel P (2001) Chem Phys Lipids 111:177–192CrossRefGoogle Scholar
  33. 33.
    Pozo Navas B, Lohner K, Deutsch G, Sevcsik E, Riske KA, Dimova R, Garidel P, Pabst G (2005) Biochim Biophys Acta Biomembr 1716:40–48CrossRefGoogle Scholar
  34. 34.
    Esquembre R, Ferrer ML, Gutiérrez MC, Mallavia R, Mateo CR (2007) J Phys Chem B 111:3665–3673CrossRefGoogle Scholar
  35. 35.
    Spyratou E, Mourelatou EA, Makropoulou M, Demetzos C (2009) Expert Opin Drug Deliv 6:305–317CrossRefGoogle Scholar
  36. 36.
    Sitterberg J, Gaspar MM, Ehrhardt C, Bakowsky U (2010) Methods Mol Biol 606:351–361CrossRefGoogle Scholar
  37. 37.
    Frederix PLTM, Bosshart PD, Engel A (2009) Biophys J 96:329–338CrossRefGoogle Scholar
  38. 38.
    Santos NC, Castanho MARB (2004) Biophys Chem 107:133–149CrossRefGoogle Scholar
  39. 39.
    Lakowicz J (1999) Principles of fluorescence spectroscopy. Kluwer, New YorkGoogle Scholar
  40. 40.
    Merino-Montero S, Montero MT, Hernández-Borrell J (2006) Biophys Chem 119:101–105CrossRefGoogle Scholar
  41. 41.
    Connell SD, Smith DA (2006) Mol Membr Biol 23:17–28CrossRefGoogle Scholar
  42. 42.
    Marczak A (2009) Bioelectrochemistry 74:236–239CrossRefGoogle Scholar
  43. 43.
    Trevors JT (2003) J Biochem Biophys Methods 57:87–103CrossRefGoogle Scholar
  44. 44.
    Basanez G, Nieva JL, Rivas E, Alonso A, Goni FM (1996) Biophys J 70:2299–2306CrossRefGoogle Scholar
  45. 45.
    M'Baye G, Mély Y, Duportail G, Klymchenko AS (2008) Biophys J 95:1217–1225CrossRefGoogle Scholar
  46. 46.
    van Langen H, Schrama CA, van Ginkel G, Ranke G, Levine YK (1989) Biophys J 55:937–947CrossRefGoogle Scholar
  47. 47.
    Cranney M, Cundall RB, Jones GR, Richards JT, Thomas EW (1983) Biochim Biophys Acta Biomembr 735:418–425CrossRefGoogle Scholar
  48. 48.
    Kaiser RD (1998) London E. Biochemistry (Mosc) 37:8180–8190CrossRefGoogle Scholar
  49. 49.
    Prendergast FG, Haugland RP, Callahan PJ (1981) Biochemistry (Mosc) 20:7333–7338CrossRefGoogle Scholar
  50. 50.
    Huang Z, Haugland RP (1991) Biochem Biophys Res Commun 181:166–171CrossRefGoogle Scholar
  51. 51.
    Repáková J, Holopainen JM, Morrow MR, McDonald MC, Capková P, Vattulainen I (2005) Biophys J 88:3398–3410CrossRefGoogle Scholar
  52. 52.
    Epand RM, Epand RF (2009) Mol Biosyst 5:580–587CrossRefGoogle Scholar
  53. 53.
    Romantsov T, Guan Z, Wood JM (2009) Biochim Biophys Acta 1788:1997–2002CrossRefGoogle Scholar
  54. 54.
    Lewis RNAH, McElhaney RN (2009) Biochim Biophys Acta Biomembr 1788:2069–2079CrossRefGoogle Scholar
  55. 55.
    Yokota K, Kanamoto R, Kito M (1980) J Bacteriol 141:1047–1051Google Scholar
  56. 56.
    Epand RF, Tokarska-Schlattner M, Schlattner U, Wallimann T, Epand RM (2007) J Mol Biol 365:968–980CrossRefGoogle Scholar
  57. 57.
    Domènech Ò, Morros A, Cabañas ME, Montero MT, Hernández-Borrell J (2007) Ultramicroscopy 107:943–947CrossRefGoogle Scholar
  58. 58.
    White GF, Racher KI, Lipski A, Hallett FR, Wood JM (2000) Biochim Biophys Acta Biomembr 1468:175–186CrossRefGoogle Scholar
  59. 59.
    Seeger HM, Marino G, Alessandrini A, Facci P (2009) Biophys J 97:1067–1076CrossRefGoogle Scholar
  60. 60.
    Doménech O, Merino-Montero S, Montero MT, Hernández-Borrell J (2006) Colloid Surf B 47:102–106CrossRefGoogle Scholar
  61. 61.
    Seeger HM, Bortolotti CA, Alessandrini A, Facci P (2009) J Phys Chem B 113:16654–16659CrossRefGoogle Scholar
  62. 62.
    Domènech Ò, Redondo L, Montero MT, Hernández-Borrell J (2007) Langmuir 23:5651–5656CrossRefGoogle Scholar
  63. 63.
    Picas L, Montero MT, Morros A, Cabañas ME, Seantier B, Milhiet PE, Hernández-Borrell J (2009) J Phys Chem B 113:4648–4655CrossRefGoogle Scholar
  64. 64.
    Picas L, Montero MT, Morros A, Vázquez-Ibar JL, Hernández-Borrell J (2010) Biochim Biophys Acta Biomembr 1798:291–296CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Requimte, Faculdade de CiênciasUniversidade do PortoPortoPortugal

Personalised recommendations