Advertisement

Analytical and Bioanalytical Chemistry

, Volume 398, Issue 3, pp 1435–1445 | Cite as

Comprehensive multidimensional separation methods by hyphenation of single-photon ionization time-of-flight mass spectrometry (SPI-TOF-MS) with GC and GC×GC

  • Markus S. Eschner
  • Werner Welthagen
  • Thomas M. Gröger
  • Marc Gonin
  • Katrin Fuhrer
  • Ralf Zimmermann
Original Paper

Abstract

One- and comprehensive two-dimensional gas chromatography were hyphenated with soft photoionization mass spectrometry. The characteristics of these two- and three-dimensional comprehensive separation techniques are discussed in detail. Using the innovative electron beam pumped excimer light source (EBEL) for single-photon ionization (SPI), organic molecules with ionization energies (E i ) of below 9.8 eV can be detected by a time-of-flight mass spectrometer (TOF-MS). SPI with 126 nm vacuum ultraviolet (VUV) photons enables the universal and soft ionization of organic molecules. SPI-TOF-MS hyphenated to one-dimensional gas chromatography results in a comprehensive two-dimensional separation method (GC×MS). To demonstrate this, diesel fuel was analyzed, and the resulting GC×MS chromatograms are discussed in depth. A three-dimensional separation method was also realized by combining comprehensive two-dimensional gas chromatography (GC×GC) with SPI-MS. In the resulting separation space, constituents originating from mineral oil diesel blended with biodiesel were dispersed along the two GC separation axes, while the molecular mass axis served as a third separation dimension.

Figure

Sketch of the innovative VUV light source EBEL and three-dimensional representation of a GC×MS analysis of diesel fuel

Keywords

Multidimensional separation Single-photon ionization Time-of-flight mass spectrometry Excimer light source Diesel fuel 

References

  1. 1.
    Dandeneau RD, Zerenner EH (1979) J High Res Chromatogr 2:351–456Google Scholar
  2. 2.
    Grob RL, Barry EF (2004) Modern practice of gas chromatography. Wiley, HobokenGoogle Scholar
  3. 3.
    Giddings JC (1984) Anal Chem 56:1258A–1270ACrossRefGoogle Scholar
  4. 4.
    Hübschmann H-J (2008) Handbook of GC/MS: fundamentals and applications. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  5. 5.
    McMaster M (2008) GC/MS: a practical user's guide. Wiley, HobokenGoogle Scholar
  6. 6.
    Munson MSB, Field FH (1966) J Am Chem Soc 88:2621–2630CrossRefGoogle Scholar
  7. 7.
    Munson B (2000) Int J Mass Spectrom 200:243–251CrossRefGoogle Scholar
  8. 8.
    Beckey HD (1969) Angew Chem Int Ed 8:623–639CrossRefGoogle Scholar
  9. 9.
    Lattimer RP, Schulten H-R (1989) Anal Chem 61:1201A–1215ACrossRefGoogle Scholar
  10. 10.
    Butcher DJ (1999) Microchem J 62:354–362CrossRefGoogle Scholar
  11. 11.
    Ng CY (2000) Int J Mass Spectrom 200:357–386CrossRefGoogle Scholar
  12. 12.
    Tonokura K, Nakamura T, Koshi M (2003) Anal Sci 19:1109–1113CrossRefGoogle Scholar
  13. 13.
    Kanno N, Tonokura K (2007) Appl Spectrosc 61:896–902CrossRefGoogle Scholar
  14. 14.
    Boesl U, Neusser HJ, Schlag EWZ (1978) Z Naturforsch 33a:1546–1548Google Scholar
  15. 15.
    Hager JW, Wallace SC (1988) Anal Chem 60:5–10CrossRefGoogle Scholar
  16. 16.
    Wang FC-Y, Qian K, Green LA (2005) Anal Chem 77:2777–2785CrossRefGoogle Scholar
  17. 17.
    Mitschke S, Welthagen W, Zimmermann R (2006) Anal Chem 78:6364–6375CrossRefGoogle Scholar
  18. 18.
    Welthagen W, Mitschke S, Mühlberger F, Zimmermann R (2007) J Chromatogr A 1150:54–61CrossRefGoogle Scholar
  19. 19.
    Welthagen W (2010)  Development and evaluation of multidimensional gas chromatographic and mass spectrometric techniques for the analysis of highly complex chemical mixtures (Ph.D. thesis). Universität Rostock, RostockGoogle Scholar
  20. 20.
    Liu Z, Phillips JB (1991) J Chromatogr Sci 29:227–231Google Scholar
  21. 21.
    Marriott P, Shellie R (2002) Trends Anal Chem 21:573–583CrossRefGoogle Scholar
  22. 22.
    Dimandja J-MD (2004) Anal Chem 76:167A–174ACrossRefGoogle Scholar
  23. 23.
    Gorecki T, Harynuk J, Panic O (2004) J Sep Sci 27:359–379CrossRefGoogle Scholar
  24. 24.
    Mondello L, Tranchida PQ, Dugo P, Dugo G (2008) Mass Spectrom Rev 27:101–124CrossRefGoogle Scholar
  25. 25.
    Adahchour M, Beens J, Brinkman UAT (2008) J Chromatogr A 1186:67–108CrossRefGoogle Scholar
  26. 26.
    Beens J, Tijssen R, Blomberg J (1998) J Chromatogr A 822:233–251CrossRefGoogle Scholar
  27. 27.
    Vendeuvre C, Ruiz-Guerrero R, Bertoncini F, Duval L, Thiebaut D, Hennion M-C (2005) J Chromatogr A 1086:21–28CrossRefGoogle Scholar
  28. 28.
    Bushey MM, Jorgenson JW (1990) Anal Chem 62:161–167CrossRefGoogle Scholar
  29. 29.
    Shellie RA, Haddad PR (2006) Anal Bioanal Chem 386:405–415CrossRefGoogle Scholar
  30. 30.
    Fairchild JN, Horvath K, Guiochon G (2009) J Chromatogr A 1216:1363–1371CrossRefGoogle Scholar
  31. 31.
    Quigley WWC, Fraga CG, Synovec RE (2000) J Microcol Sep 12:160–166CrossRefGoogle Scholar
  32. 32.
    de Koning S, Janssen H-G, van Deursen M, Brinkman UAT (2004) J Sep Sci 27:397–409CrossRefGoogle Scholar
  33. 33.
    Hejazi L, Ebrahimi D, Guilhaus M, Hibbert DB (2009) Anal Chem 81:1450–1458CrossRefGoogle Scholar
  34. 34.
    Ledford EB, Billesbach CA, Zhu Q (2000) J High Res Chromatogr 23:205–207CrossRefGoogle Scholar
  35. 35.
    Watson NE, Siegler WC, Hoggard JC, Synovec RE (2007) Anal Chem 79:8270–8280CrossRefGoogle Scholar
  36. 36.
    Mühlberger F, Saraji-Bozorgzad M, Gonin M, Fuhrer K, Zimmermann R (2007) Anal Chem 79:8118–8124CrossRefGoogle Scholar
  37. 37.
    Wieser J, Murnick DE, Ulrich A, Huggins HA, Liddle A, Brown WL (1997) Rev Sci Instrum 68:1360–1364CrossRefGoogle Scholar
  38. 38.
    Zimmermann R, Lermer C, Schramm K-W, Kettrup A, Boesl U (1995) Eur Mass Spectrom 1:341–351CrossRefGoogle Scholar
  39. 39.
    Geissler R, Saraji-Bozorgzad MR, Gröger T, Fendt A, Streibel T, Sklorz M, Krooss BM, Fuhrer K, Gonin M, Kaisersberger E, Denner T, Zimmermann R (2009) Anal Chem 81:6038–6048CrossRefGoogle Scholar
  40. 40.
    Mühlberger F, Wieser J, Morozov A, Ulrich A, Zimmermann R (2005) Anal Chem 77:2218–2226CrossRefGoogle Scholar
  41. 41.
    Schramm E, Kürten A, Hölzer J, Mitschke S, Mühlberger F, Sklorz M, Wieser J, Ulrich A, Pütz M, Schulte-Ladbeck R, Schultze R, Curtius J, Borrmann S, Zimmermann R (2009) Anal Chem 81:4456–4467CrossRefGoogle Scholar
  42. 42.
    Schramm E, Hölzer J, Pütz M, Schulte-Ladbeck R, Schultze R, Sklorz M, Ulrich A, Wieser J, Zimmermann R (2009) Anal Bioanal Chem 395:1795–1807CrossRefGoogle Scholar
  43. 43.
    Adahchour M, Beens J, Vreuls RJJ, Batenburg AM, Brinkman UAT (2004) J Chromatogr A 1054:47–55Google Scholar
  44. 44.
    Qian K, Dechert GJ, Edwards KE (2007) Int J Mass Spectrom 265:230–236CrossRefGoogle Scholar
  45. 45.
    Venkatramani CJ, Xu J, Phillips JB (1996) Anal Chem 68:1486–1492CrossRefGoogle Scholar
  46. 46.
    Schoenmakers PJ, Oomen JLMM, Blomberg J, Genuit W, van Velzen G (2000) J Chromatogr A 892:29–46CrossRefGoogle Scholar
  47. 47.
    Adahchour M, Beens J, Vreuls RJJ, Brinkman UAT (2006) Trends Anal Chem 25:726–741CrossRefGoogle Scholar
  48. 48.
    Mao D, Van De Weghe H, Diels L, De Brucker N, Lookman R, Vanermen G (2008) J Chromatogr A 1179:33–40CrossRefGoogle Scholar
  49. 49.
    Saraji-Bozorgzad MR, Eschner MS, Gröger T, Geissler R, Streibel T, Kaisersberger E, Denner T, Zimmermann R (2010) Analytical Chemistry (not yet published)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Markus S. Eschner
    • 1
    • 2
  • Werner Welthagen
    • 1
  • Thomas M. Gröger
    • 1
    • 2
  • Marc Gonin
    • 3
  • Katrin Fuhrer
    • 3
  • Ralf Zimmermann
    • 1
    • 2
    • 4
  1. 1.Joint Mass Spectrometry Center, Cooperation Group Analysis of Complex Molecular Systems, Institute of Ecological Chemistry, Helmholtz Zentrum MünchenNeuherbergGermany
  2. 2.Joint Mass Spectrometry Center, Chair of Analytical Chemistry, Institute of ChemistryUniversity of RostockRostockGermany
  3. 3.Tofwerk AGThunSwitzerland
  4. 4.bifa Umweltinstitut GmbHAugsburgGermany

Personalised recommendations