Analytical and Bioanalytical Chemistry

, Volume 398, Issue 6, pp 2535–2549 | Cite as

Sizing up the future of microRNA analysis

  • Abraham J. Qavi
  • Jared T. Kindt
  • Ryan C. BaileyEmail author


In less than 20 years, our appreciation for micro-RNA molecules (miRNAs) has grown from an original, curious observation in worms to their current status as incredibly important global regulators of gene expression that play key roles in many transformative biological processes. As our understanding of these small, non-coding transcripts continues to evolve, new approaches for their analysis are emerging. In this critical review we describe recent improvements to classical methods of detection as well as innovative new technologies that are poised to help shape the future landscape of miRNA analysis.


Driven by the ever increasing appreciation of the critical biological roles played by microRNAs, new technologies are continually reshaping the landscape of microRNA analysis. This review highlights existing and emerging technologies for the detection of microRNAs


Bioanalytical methods Bioassays Biosensors Nucleic acids (DNA | RNA) 



We gratefully acknowledge financial support for our own efforts in developing a quantitative, multiparameter miRNA analysis platform from the National Institutes of Health (NIH) Director’s New Innovator Award Program, part of the NIH Roadmap for Medical Research, through grant number 1-DP2-OD002190-01; the Camille and Henry Dreyfus Foundation, through a New Faculty Award; and the Eastman Chemical Company (fellowship to AJQ).


  1. 1.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefGoogle Scholar
  2. 2.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854Google Scholar
  3. 3.
    Poethig RS (2009) Small RNAs and developmental timing in plants. Curr Opin Genet Dev 19(4):374–378CrossRefGoogle Scholar
  4. 4.
    Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132(21):4653–4662CrossRefGoogle Scholar
  5. 5.
    Fineberg SK, Kosik KS, Davidson BL (2009) MicroRNAs potentiate neural development. Neuron 64(3):303–309CrossRefGoogle Scholar
  6. 6.
    Wang Y, Blelloch R (2009) Cell cycle regulation by MicroRNAs in embryonic stem cells. Cancer Res 69(10):4093–4096CrossRefGoogle Scholar
  7. 7.
    Lin CH et al. (2009) Myc-regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J 28(20):3157–3170Google Scholar
  8. 8.
    Chen CZ et al. (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303(5654):83–86Google Scholar
  9. 9.
    Meola N, Gennarino VA, Banfi S (2009) MicroRNAs and genetic diseases. Pathogenetics 2(1):7Google Scholar
  10. 10.
    Tsai LM, Yu D (2010) MicroRNAs in common diseases and potential therapeutic applications. Clin Exp Pharmacol Physiol 37(1):102–107CrossRefGoogle Scholar
  11. 11.
    Dennis PP, Omer A (2005) Small non-coding RNAs in Archaea. Curr Opin Microbiol 8(6):685–694CrossRefGoogle Scholar
  12. 12.
    Masse E, Majdalani N, Gottesman S (2003) Regulatory roles for small RNAs in bacteria. Curr Opin Microbiol 6(2):120–124CrossRefGoogle Scholar
  13. 13.
    Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53CrossRefGoogle Scholar
  14. 14.
    Pasquinelli AE et al. (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86–89Google Scholar
  15. 15.
    Fire A et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811Google Scholar
  16. 16.
    Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30(4):460–471CrossRefGoogle Scholar
  17. 17.
    Griffiths-Jones S et al. (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158Google Scholar
  18. 18.
    Baek D et al. (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71Google Scholar
  19. 19.
    Friedman RC et al. (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105Google Scholar
  20. 20.
    Wu S et al. (2010) Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene 29(15):2302–2308Google Scholar
  21. 21.
    Cho WC (2010) MicroRNAs in cancer—from research to therapy. Biochim Biophys Acta 1805(2):209–217Google Scholar
  22. 22.
    Ruan K, Fang XG, Ouyang GL (2009) MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett 285(2):116–126Google Scholar
  23. 23.
    Eacker SM, Dawson TM, Dawson VL (2009) Understanding microRNAs in neurodegeneration. Nat Rev Neurosci 10(12):837–841Google Scholar
  24. 24.
    Kocerha J, Kauppinen S, Wahlestedt C (2009) MicroRNAs in CNS disorders. Neuromolecular Med 11(3):162–172Google Scholar
  25. 25.
    Pandey AK et al. (2009) MicroRNAs in diabetes: tiny players in big disease. Cell Physiol Biochem 23(4–6):221–232Google Scholar
  26. 26.
    Cai BZ, Pan ZW, Lu YJ (2010) The roles of microRNAs in heart diseases: a novel important regulator. Curr Med Chem 17(5):407–411Google Scholar
  27. 27.
    Saal S, Harvey SJ (2009) MicroRNAs and the kidney: coming of age. Curr Opin Nephrol Hypertens 18(4):317–323CrossRefGoogle Scholar
  28. 28.
    Liang MY et al. (2009) MicroRNA: a new frontier in kidney and blood pressure research. Am J Physiol Ren Physiol 297(3):F553–F558Google Scholar
  29. 29.
    Chen XM (2009) MicroRNA signatures in liver diseases. World J Gastroenterol 15(14):1665–1672CrossRefGoogle Scholar
  30. 30.
    O’Connell RM et al. (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10(2):111–122Google Scholar
  31. 31.
    Tsitsiou E, Lindsay MA (2009) MicroRNAs and the immune response. Curr Opin Pharmacol 9(4):514–520Google Scholar
  32. 32.
    Li CS et al. (2009) Therapeutic microRNA strategies in human cancer. AAPS J 11(4):747–757Google Scholar
  33. 33.
    Roshan R et al. (2009) MicroRNAs: novel therapeutic targets in neurodegenerative diseases. Drug Discov Today 14(23–24):1123–1129Google Scholar
  34. 34.
    Arenz C (2006) MicroRNAs: future drug targets? Angew Chem Int Ed 45(31):5048–5050Google Scholar
  35. 35.
    Fabbri M (2010) miRNAs as molecular biomarkers of cancer. Expert Rev 10(4):435–444Google Scholar
  36. 36.
    Gilad S et al. (2008) Serum microRNAs are promising novel biomarkers. PLoS ONE 3(9):e3148Google Scholar
  37. 37.
    Mitchell PS et al. (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105(30):10513–10518Google Scholar
  38. 38.
    Chen X et al. (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006Google Scholar
  39. 39.
    Dai H et al. (2002) Use of hybridization kinetics for differentiating specific from non-specific binding to oligonucleotide microarrays. Nucl Acids Res 30(16):e86Google Scholar
  40. 40.
    Liu W-T, Mirzabekov AD, Stahl DA (2001) Optimization of an oligonucleotide microchip for microbial identification studies: a non-equilibrium dissociation approach. Environ Microbiol 3(10):619–629CrossRefGoogle Scholar
  41. 41.
    Dorris DR et al. (2003) Oligodeoxyribonucleotide probe accessibility on a three-dimensional DNA microarray surface and the effect of hybridization time on the accuracy of expression ratios. BMC Biotechnol 3:6Google Scholar
  42. 42.
    Urakawa H et al. (2003) Optimization of single-base-pair mismatch discrimination in oligonucleotide microarrays. Appl Environ Microbiol 69(5):2848–2856Google Scholar
  43. 43.
    Guschin D et al. (1997) Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology. Appl Environ Microbiol 63(6):2397–2402Google Scholar
  44. 44.
    Mendes ND, Freitas AT, Sagot MF (2009) Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res 37(8):2419–2433CrossRefGoogle Scholar
  45. 45.
    Stark A et al. (2003) Identification of Drosophila microRNA targets. PLoS Biol 1(3):397–409Google Scholar
  46. 46.
    Brennecke J et al. (2005) Principles of microRNA–target recognition. PLoS Biol 3(3):404–418Google Scholar
  47. 47.
    Krek A et al. (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500Google Scholar
  48. 48.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20CrossRefGoogle Scholar
  49. 49.
    Grun D et al. (2005) MicroRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 1(1):51–66Google Scholar
  50. 50.
    Chen K, Rajewsky N (2006) Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet 38(12):1452–1456CrossRefGoogle Scholar
  51. 51.
    Friedman RC et al. (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res e(1):92–105Google Scholar
  52. 52.
    Kiriakidou M et al. (2004) A combined computational–experimental approach predicts human microRNA targets. Genes Dev 18(10):1165–1178Google Scholar
  53. 53.
    Maragkakis M et al. (2009) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37:W273–W276Google Scholar
  54. 54.
    Alexiou P et al. (2010) The DIANA-mirExTra web server: from gene expression data to microRNA function. PLoS ONE 5(2):e9171Google Scholar
  55. 55.
    Rehmsmeier M et al. (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10(10):1507–1517Google Scholar
  56. 56.
    Hammell M et al. (2008) mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts. Nat Meth 5(9):813–819Google Scholar
  57. 57.
    John B et al. (2004) Human microRNA targets. PLoS Biol 2(11):1862–1879Google Scholar
  58. 58.
    Betel D et al. (2008) The resource: targets and expression. Nucleic Acids Res 36:D149–D153Google Scholar
  59. 59.
    Long D et al. (2007) Potent effect of target structure on microRNA function. Nat Struct Mol Biol 14(4):287–294Google Scholar
  60. 60.
    Lagos-Quintana M et al. (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739Google Scholar
  61. 61.
    Landgraf P et al. (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414Google Scholar
  62. 62.
    Lau NC et al. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543):858–862Google Scholar
  63. 63.
    Cummins JM et al. (2006) The colorectal microRNAome. Proc Natl Acad Sci USA 103(10):3687–3692.Google Scholar
  64. 64.
    Mattie M et al. (2006) Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 5(1):24Google Scholar
  65. 65.
    Lagos-Quintana M et al. (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858Google Scholar
  66. 66.
    Sempere L et al. (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5(3):R13Google Scholar
  67. 67.
    Calin GA et al. (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99(24):15524–15529.Google Scholar
  68. 68.
    Streit S et al. (2008) Northern blot analysis for detection and quantification of RNA in pancreatic cancer cells and tissues. Nat Protocols 4(1):37–43Google Scholar
  69. 69.
    Fernyhough P (2001) Quantification of mRNA levels using northern blotting. In: Rush RA (ed) Neurotrophin protocols. Humana, Totowa, pp 53–63Google Scholar
  70. 70.
    Calin GA et al. (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99(24):15524–15529Google Scholar
  71. 71.
    Varallyay E, Burgyan J, Havelda Z (2008) MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc 3(2):190–196CrossRefGoogle Scholar
  72. 72.
    Valoczi A et al. (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 32(22):e175Google Scholar
  73. 73.
    Braasch DA, Corey DR (2001) Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol 8(1):1–7CrossRefGoogle Scholar
  74. 74.
    Ramkissoon SH et al. (2006) Nonisotopic detection of microRNA using digoxigenin labeled RNA probes. Mol Cell Probes 20(1):1–4Google Scholar
  75. 75.
    Schmittgen TD et al. (2004) A high-throughput method to monitor the expression of microRNA precursors. Nucl Acids Res 32(4):e43Google Scholar
  76. 76.
    Raymond CK et al. (2005) Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 11(11):1737–1744Google Scholar
  77. 77.
    Miska E et al. (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5(9):R68Google Scholar
  78. 78.
    Barad O et al. (2004) MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 14(12):2486–2494Google Scholar
  79. 79.
    Ohtsuka E et al. (1977) Joining of synthetic ribotrinucleotides with defined sequences catalyzed by T4 RNA ligase. Eur J Biochem 81(2):285–291Google Scholar
  80. 80.
    Mclaughlin LW et al. (1982) The effect of acceptor oligoribonucleotide sequence on the T4 RNA ligase reaction. Eur J Biochem 125(3):639–643Google Scholar
  81. 81.
    Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39(4):519–525CrossRefGoogle Scholar
  82. 82.
    Andreasen D et al. (2010) Improved microRNA quantification in total RNA from clinical samples. Methods 50(4):S6–S9Google Scholar
  83. 83.
    Chen CF et al. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179Google Scholar
  84. 84.
    Varkonyi-Gasic E et al. (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12Google Scholar
  85. 85.
    Li J et al. (2009) Real-time polymerase chain reaction microRNA detection based on enzymatic stem-loop probes ligation. Anal Chem 81(13):5446–5451Google Scholar
  86. 86.
    Lao KQ et al. (2006) Multiplexing RT-PCR for the detection of multiple miRNA species in small samples. Biochem Biophys Res Commun 343(1):85–89Google Scholar
  87. 87.
    Castoldi M et al. (2006) A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 12(5):913–920Google Scholar
  88. 88.
    Wang H, Ach RA, Curry B (2007) Direct and sensitive miRNA profiling from low-input total RNA. RNA 13(1):151–159Google Scholar
  89. 89.
    Thomson JM et al. (2004) A custom microarray platform for analysis of microRNA gene expression. Nat Meth 1(1):47–53Google Scholar
  90. 90.
    He L et al. (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833Google Scholar
  91. 91.
    Krichevsky AM et al. (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9(10):1274–1281Google Scholar
  92. 92.
    Goff LA et al. (2005) Rational probe optimization and enhanced detection strategy for microRNAs using microarrays. RNA Biol 2(3):93–100Google Scholar
  93. 93.
    Babak T et al. (2004) Probing microRNAs with microarrays: tissue specificity and functional inference. RNA 10(11):1813–1819Google Scholar
  94. 94.
    Wiegant JCAG et al. (1999) ULS: a versatile method of labeling nucleic acids for FISH based on a monofunctional reaction of cisplatin derivatives with guanine moieties. Cytogenet Genome Res 87(1–2):47–52Google Scholar
  95. 95.
    Liang RQ et al. (2005) An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res 33(2):e17Google Scholar
  96. 96.
    Nelson PT et al. (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Meth 1(2):155–161Google Scholar
  97. 97.
    Berezikov E et al. (2006) Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis. Genome Res 16(10):1289–1298Google Scholar
  98. 98.
    Nelson PT et al. (2006) RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA e(2):187–191Google Scholar
  99. 99.
    Yeung ML et al. (2005) Changes in microRNA expression profiles in HIV-1-transfected human cells. Retrovirology 2(1):81Google Scholar
  100. 100.
    Qavi AJ et al. (2009) Label-free technologies for quantitative multiparameter biological analysis. Anal Bioanal Chem 394:121–135Google Scholar
  101. 101.
    Egholm M et al. (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature 365(6446):566–568Google Scholar
  102. 102.
    Nielsen PE et al. (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254(5037):1497–1500Google Scholar
  103. 103.
    Zhang G-J et al. (2009) Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens Bioelectron 24(8):2504–2508Google Scholar
  104. 104.
    Zhang GJ et al. (2010) Silicon nanowire biosensor for highly sensitive and rapid detection of dengue virus. Sens Actuators B 146(1):138–144Google Scholar
  105. 105.
    Fan Y et al. (2007) Detection of microRNAs using target-guided formation of conducting polymer nanowires in nanogaps. J Am Chem Soc 129(17):5437–5443Google Scholar
  106. 106.
    Pohlmann C, Sprinzl M (2010) Electrochemical detection of microRNAs via gap hybridization assay. Anal Chem 82(11):4434–4440Google Scholar
  107. 107.
    Yang H et al. (2009) Direct, electronic microRNA detection for the rapid determination of differential expression profiles. Angew Chem Int Ed 48(45):8461–8464Google Scholar
  108. 108.
    Soleymani L et al. (2009) Nanostructuring of patterned microelectrodes to enhance the sensitivity of electrochemical nucleic acids detection. Angew Chem Int Ed 48(45):8457–8460Google Scholar
  109. 109.
    Lusi EA et al. (2009) Innovative electrochemical approach for an early detection of microRNAs. Anal Chem 81(7):2819–2822Google Scholar
  110. 110.
    Yang WJ et al. (2008) Quantification of microRNA by gold nanoparticle probes. Anal Biochem 376(2):183–188Google Scholar
  111. 111.
    Gao ZQ, Yang ZC (2006) Detection of microRNAs using electrocatalytic nanoparticle tags. Anal Chem 78(5):1470–1477Google Scholar
  112. 112.
    Gao ZQ, Yu YH (2007) Direct labeling microRNA with an electrocatalytic moiety and its application in ultrasensitive microRNA assays. Biosens Bioelectron 22(6):933–940Google Scholar
  113. 113.
    Gao ZQ, Yu YH (2007) A microRNA biosensor based on direct chemical ligation and electrochemically amplified detection. Sens Actuators B 121(2):552–559Google Scholar
  114. 114.
    Li JS et al. (2009) Detection of microRNA by fluorescence amplification based on cation exchange in nanocrystals. Anal Chem 81(23):9723–9729Google Scholar
  115. 115.
    Neely LA et al. (2006) A single-molecule method for the quantitation of microRNA gene expression. Nat Meth 3(1):41–46Google Scholar
  116. 116.
    Cissell KA et al. (2008) Bioluminescence-based detection of microRNA, miR21 in breast cancer cells. Anal Chem 80(7):2319–2325Google Scholar
  117. 117.
    Cho H et al. (2009) Label-free and highly sensitive biomolecular detection using SERS and electrokinetic preconcentration. Lab Chip 9(23):3360–3363Google Scholar
  118. 118.
    Huh YS et al. (2009) Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells. Lab Chip 9(3):433–439Google Scholar
  119. 119.
    Hudson SD, Chumanov G (2009) Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy). Anal Bioanal Chem 394(3):679–686CrossRefGoogle Scholar
  120. 120.
    Driskell JD et al. (2008) Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS). Biosens Bioelectron 24(4):917–922Google Scholar
  121. 121.
    Nelson BP et al. (2000) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 73(1):1–7Google Scholar
  122. 122.
    Wegner GJ, Lee HJ, Corn RM (2002) Characterization and optimization of peptide arrays for the study of epitope–antibody interactions using surface plasmon resonance imaging. Anal Chem 74(20):5161–5168Google Scholar
  123. 123.
    Smith EA et al. (2003) Surface plasmon resonance imaging studies of protein–carbohydrate interactions. J Am Chem Soc 125(20):6140–6148Google Scholar
  124. 124.
    Wegner GJ et al. (2004) Real-time surface plasmon resonance imaging measurements for the multiplexed determination of protein adsorption/desorption kinetics and surface enzymatic reactions on peptide microarrays. Anal Chem 76(19):5677–5684Google Scholar
  125. 125.
    Fang S et al. (2006) Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc 128(43):14044–14046Google Scholar
  126. 126.
    Washburn AL, Gunn LC, Bailey RC (2009) Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators. Anal Chem 81(22):9499–9506Google Scholar
  127. 127.
    Washburn AL et al. (2010) Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators. Anal Chem 82(1):69–72Google Scholar
  128. 128.
    Luchansky MS, Bailey RC (2010) Silicon photonic microring resonators for quantitative cytokine detection and T-cell secretion analysis. Anal Chem 82(5):1975–1981Google Scholar
  129. 129.
    Qavi AJ, Bailey RC (2010) Multiplexed detection and label-free quantitation of microRNAs using arrays of silicon photonic microring resonators. Angew Chem Int Ed 49(27):4608–4611Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Abraham J. Qavi
    • 1
  • Jared T. Kindt
    • 1
  • Ryan C. Bailey
    • 1
    Email author
  1. 1.Department of Chemistry, Institute for Genomic Biology, and Micro and Nanotechnology LaboratoryUniversity of IllinoisUrbanaUSA

Personalised recommendations