Analytical and Bioanalytical Chemistry

, Volume 398, Issue 2, pp 885–893

Inkjet-printed paperfluidic immuno-chemical sensing device

  • Koji Abe
  • Kaori Kotera
  • Koji Suzuki
  • Daniel Citterio
Original Paper

Abstract

This paper reports on an inkjet printing method for the fabrication of lateral flow immunochromatographic devices made from a single piece of filter paper by patterning microfluidic channels and dispensing immunosensing inks, requiring only a single printing apparatus. This “paperfluidic” immunosensing device allows for a less time-consuming and more low-cost fabrication compared with the conventional immunochromatographic strips requiring multiple pads, plastic or nylon backing, and a plastic case. A sandwich immunoreaction was performed on the patterned immunosensing paper device, and the sensitivity of the device was optimized with an IgG model analyte. Inkjet-printed antibodies on the test line and the control line were immobilized by physical adsorption, resulting in a very simple fabrication method applicable for pure cellulose surfaces. The color intensity in the test line and the control line was determined both by naked eye and by means of a color scanner in combination with a simple computer program. With the resulting paperfluidic immunosensing device, human IgG concentrations at least down to 10 μg/l could be detected within 20 min. Additionally, in order to demonstrate the feasibility of a total multianalyte sensing system, a combined immuno-chemical sensing device was also fabricated by patterning an additional microfluidic channel for a chemical assay onto the same paper substrate. This low-cost multianalyte paperfluidic sensing device thus demonstrates the feasibility of simple, portable, and disposable tools for pathogen detection in the field of medical, environmental, and food analyses, possibly resulting in useful devices in remote settings and less-industrialized countries.

Figure

This study describes a semiquantitative microfluidic multianalyte immuno-chemical sensing device fabricated by inkjet-printing from a single piece of filter paper

Keywords

Immunochromatography Chemical sensor Microfluidic device Paper Color analysis 

Supplementary material

216_2010_4011_MOESM1_ESM.pdf (4.9 mb)
ESM 1(PDF 5049 kb)

References

  1. 1.
    Li X, Tian J, Shen W (2010) Anal Bioanal Chem 396:495–501CrossRefGoogle Scholar
  2. 2.
    Li X, Tian J, Garnier G, Shen W (2010) Colloids Surf B Biointerfaces 76:564–570CrossRefGoogle Scholar
  3. 3.
    Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A, Martinez AW, Narovlyansky M, Whitesides GM (2010) Lab Chip 10:477–483CrossRefGoogle Scholar
  4. 4.
    Pelton R (2009) TrAC 28:925–942Google Scholar
  5. 5.
    Hossain SMZ, Luckham RE, McFadden MJ, Brennan JD (2009) Anal Chem 81:9055–9064CrossRefGoogle Scholar
  6. 6.
    Hossain SMZ, Luckham RE, Smith AM, Lebert JM, Davies LM, Pelton RH, Filipe CDM, Brennan JD (2009) Anal Chem 81:5474–5483CrossRefGoogle Scholar
  7. 7.
    Ali MM, Aguirre SD, Xu Y, Filipe CDM, Pelton R, Li Y (2009) Chem Commun 43:6640–6642CrossRefGoogle Scholar
  8. 8.
    Carrilho E, Phillips ST, Vella SJ, Martinez AW, Whitesides GM (2009) Anal Chem 81:5990–5998CrossRefGoogle Scholar
  9. 9.
    Zhao WA, van den Berg A (2008) Lab Chip 8:1988–1991CrossRefGoogle Scholar
  10. 10.
    Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM (2008) Lab Chip 8:2146–2150CrossRefGoogle Scholar
  11. 11.
    Martinez AW, Phillips ST, Whitesides GM (2008) Proc Natl Acad Sci USA 105:19606–19611CrossRefGoogle Scholar
  12. 12.
    Su SX, Ali M, Filipe CDM, Li YF, Pelton R (2008) Biomacromolecules 9:935–941CrossRefGoogle Scholar
  13. 13.
    Zhao W, Ali MM, Aguirre SD, Brook MA, Li Y (2008) Anal Chem 80:8431–8437CrossRefGoogle Scholar
  14. 14.
    Li X, Tian J, Nguyen T, Shen W (2008) Anal Chem 80:9131–9134CrossRefGoogle Scholar
  15. 15.
    Martinez AW, Phillips ST, Carrilho E, Thomas SW, Sindi H, Whitesides GM (2008) Anal Chem 80:3699–3707CrossRefGoogle Scholar
  16. 16.
    Bruzewicz DA, Reches M, Whitesides GM (2008) Anal Chem 80:3387–3392CrossRefGoogle Scholar
  17. 17.
    Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Angew Chem Int Ed 46:1318–1320CrossRefGoogle Scholar
  18. 18.
    Haeberle S, Zengerle R (2007) Lab Chip 7:1094–1110CrossRefGoogle Scholar
  19. 19.
    Chin CD, Linder V, Sia SK (2007) Lab Chip 7:41–57CrossRefGoogle Scholar
  20. 20.
    Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Nature 442:412–418CrossRefGoogle Scholar
  21. 21.
    Whitesides GM (2006) Nature 442:368–373CrossRefGoogle Scholar
  22. 22.
    Sia SK, Linder V, Parviz BA, Siegel A, Whitesides GM (2004) Angew Chem Int Ed 43:498–502CrossRefGoogle Scholar
  23. 23.
    Mabey D, Peeling RW, Ustianowski A, Perkins MD (2004) Nat Rev Micro 2:231–240CrossRefGoogle Scholar
  24. 24.
    Gardeniers JGE, van den Berg A (2004) Anal Bioanal Chem 378:1700–1703CrossRefGoogle Scholar
  25. 25.
    Lu Y, Shi WW, Qin JH, Lin BC (2010) Anal Chem 82:329–335CrossRefGoogle Scholar
  26. 26.
    Lu Y, Shi W, Jiang L, Qin J, Lin B (2009) Electrophoresis 30:1497–1500CrossRefGoogle Scholar
  27. 27.
    Carrilho E, Martinez AW, Whitesides GM (2009) Anal Chem 81:7091–7095CrossRefGoogle Scholar
  28. 28.
    Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Anal Chem 82:3–10CrossRefGoogle Scholar
  29. 29.
    Abe K, Suzuki K, Citterio D (2008) Anal Chem 80:6928–6934CrossRefGoogle Scholar
  30. 30.
    de Gans BJ, Hoeppener S, Schubert US (2006) Adv Mater 18:910CrossRefGoogle Scholar
  31. 31.
    Posthuma-Trumpie G, Korf J, van Amerongen A (2009) Anal Bioanal Chem 393:569–582CrossRefGoogle Scholar
  32. 32.
    von Lode P (2005) Clin Biochem 38:591–606CrossRefGoogle Scholar
  33. 33.
    Paek S-H, Lee S-H, Cho J-H, Kim Y-S (2000) Methods 22:53–60CrossRefGoogle Scholar
  34. 34.
    Borisov SM, Mayr T, Klimant I (2008) Anal Chem 80:573–582CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Koji Abe
    • 1
  • Kaori Kotera
    • 1
  • Koji Suzuki
    • 1
  • Daniel Citterio
    • 1
  1. 1.Department of Applied Chemistry, Faculty of Science and TechnologyKeio UniversityYokohamaJapan

Personalised recommendations