Analytical and Bioanalytical Chemistry

, Volume 398, Issue 2, pp 589–605 | Cite as

Toxicity assessment of nanomaterials: methods and challenges

Review

Abstract

The increasing use of nanomaterials in consumer and industrial products has aroused global concern regarding their fate in biological systems, resulting in a demand for parallel risk assessment. A number of studies on the effects of nanoparticles in in vitro and in vivo systems have been published. However, there is still a need for further studies that conclusively establish their safety/toxicity, due to the many experimental challenges and issues encountered when assessing the toxicity of nanomaterials. Most of the methods used for toxicity assessment were designed and standardized with chemical toxicology in mind. However, nanoparticles display several unique physicochemical properties that can interfere with or pose challenges to classical toxicity assays. Recently, some new methods and modified versions of pre-existing methods have been developed for assessing the toxicity of nanomaterials. This review is an attempt to highlight some important methods employed in nanomaterial toxicology and to provide a critical analysis of the major issues/challenges faced in this emerging field.

Figure

Nanospecific properties leading to interference with some commonly used in vitro assays.

Keywords

Nanomaterial toxicology In vitro In vivo Methods Interference Challenges 

References

  1. 1.
    Buffle J (2006) The key role of environmental colloids/nanoparticles for the sustainability of life. Environ Chem 3(3):155–158CrossRefGoogle Scholar
  2. 2.
    Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22CrossRefGoogle Scholar
  3. 3.
    Theng BKG, Yuan G (2008) Nanoparticles in the soil environment. Elements 4(6):395–399CrossRefGoogle Scholar
  4. 4.
    Xia L, Lenaghan SC, Zhang M, Zhang Z, Li Q (2010) Naturally occurring nanoparticles from English ivy: an alternative to metal-based nanoparticles for UV protection. J Nanobiotechnol 8(1):12CrossRefGoogle Scholar
  5. 5.
    Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627CrossRefGoogle Scholar
  6. 6.
    Kahru A, Savolainen K (2010) Potential hazard of nanoparticles: from properties to biological and environmental effects. Toxicology 269(2–3):89–91CrossRefGoogle Scholar
  7. 7.
    Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839CrossRefGoogle Scholar
  8. 8.
    Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92(1):5–22CrossRefGoogle Scholar
  9. 9.
    Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49CrossRefGoogle Scholar
  10. 10.
    Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150(5):552–558CrossRefGoogle Scholar
  11. 11.
    Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185(3):211–218CrossRefGoogle Scholar
  12. 12.
    Yang X, Liu J, He H, Zhou L, Gong C, Wang X, Yang L, Yuan J, Huang H, He L, Zhang B, Zhuang Z (2010) SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells. Part Fibre Toxicol 7(1):1Google Scholar
  13. 13.
    Dhawan A, Taurozzi JS, Pandey AK, Shan W, Miller SM, Hashsham SA, Tarabara VV (2006) Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity. Environ Sci Technol 40(23):7394–7401CrossRefGoogle Scholar
  14. 14.
    Singh S, D'Britto V, Prabhune AA, Ramana CV, Dhawan A, Prasad BLV (2010) Cytotoxic and genotoxic assessment of glycolipid-reduced and -capped gold and silver nanoparticles. New J Chem 34(2):294–301CrossRefGoogle Scholar
  15. 15.
    Samberg ME, Oldenburg SJ, Monteiro-Riviere NA (2010) Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect 118:407–413Google Scholar
  16. 16.
    Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69(22):8784–8789CrossRefGoogle Scholar
  17. 17.
    Xie G, Sun J, Zhong G, Shi L, Zhang D (2009) Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol 84:183–190CrossRefGoogle Scholar
  18. 18.
    Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, Olmedo I, Clos A, Sadagopa Ramanujam VM, Urayama A, Vergara L, Kogan MJ, Soto C (2010) Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun 393(4):649–655CrossRefGoogle Scholar
  19. 19.
    Baer DR, Gaspar DJ, Nachimuthu P, Techane SD, Castner DG (2010) Application of surface chemical analysis tools for characterization of nanoparticles. Anal Bioanal Chem 396(3):983–1002CrossRefGoogle Scholar
  20. 20.
    Doak SH, Griffiths SM, Manshian B, Singh N, Williams PM, Brown AP, Jenkins GJ (2009) Confounding experimental considerations in nanogenotoxicology. Mutagenesis 24(4):285–293CrossRefGoogle Scholar
  21. 21.
    Fischer HC, Chan WC (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18(6):565–571CrossRefGoogle Scholar
  22. 22.
    Howard AG (2009) On the challenge of quantifying man-made nanoparticles in the aquatic environment. J Environ Monit 12(1):135–142CrossRefGoogle Scholar
  23. 23.
    Stone V, Johnston H, Schins RP (2009) Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol 39(7):613–626CrossRefGoogle Scholar
  24. 24.
    Berhanu D, Dybowska A, Misra SK, Stanley CJ, Ruenraroengsak P, Boccaccini AR, Tetley TD, Luoma SN, Plant JA, Valsami-Jones E (2009) Characterisation of carbon nanotubes in the context of toxicity studies. Environ Health 8(Suppl 1):S3CrossRefGoogle Scholar
  25. 25.
    Sayes CM, Warheit DB (2009) Characterization of nanomaterials for toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(6):660–670CrossRefGoogle Scholar
  26. 26.
    Warheit DB (2008) How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101(2):183–185CrossRefGoogle Scholar
  27. 27.
    Powers K, Palazuelos M, Moudgil B, Roberts S (2007) Characterization of the size, shape and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1(1):42–51CrossRefGoogle Scholar
  28. 28.
    Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97(1):163–180CrossRefGoogle Scholar
  29. 29.
    Weibel A, Bouchet R, Boulc'h F, Knauth P (2005) The big problem of small particles: a comparison of methods for determination of particle size in nanocrystalline anatase powders. Chem Mater 17(9):2378–2385CrossRefGoogle Scholar
  30. 30.
    Gupta S, Brouwer P, Bandyopadhyay S, Patil S, Briggs R, Jain J, Seal S (2005) TEM/AFM investigation of size and surface properties of nanocrystalline ceria. J Nanosci Nanotechnol 5(7):1101–1107CrossRefGoogle Scholar
  31. 31.
    Scalf J, West P (2006) Part I: introduction to nanoparticle characterization with AFM. Pacific Nanotechnology, Santa Clara (see www.nanoparticles.org/pdf/Scalf-West.pdf)
  32. 32.
    Hradil J, Pisarev A, Babic M, Horak D (2007) Dextran-modified iron oxide nanoparticles. China Particuology 5(1–2):162–168CrossRefGoogle Scholar
  33. 33.
    Dhawan A, Sharma V, Parmar D (2009) Nanomaterials: a challenge for toxicologists. Nanotoxicology 3(1):1–9CrossRefGoogle Scholar
  34. 34.
    Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101(2):239–253CrossRefGoogle Scholar
  35. 35.
    Montes-Burgos I, Walczyk D, Hole P, Smith J, Lynch I, Dawson KA (2010) Characterisation of nanoparticle size and state prior to nanotoxicological studies. J Nanopart Res 12:47–53CrossRefGoogle Scholar
  36. 36.
    Motskin M, Wright DM, Muller K, Kyle N, Gard TG, Porter AE, Skepper JN (2009) Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials 30(19):3307–3317CrossRefGoogle Scholar
  37. 37.
    Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134CrossRefGoogle Scholar
  38. 38.
    Zhang LW, Yang J, Barron AR, Monteiro-Riviere NA (2009) Endocytic mechanisms and toxicity of a functionalized fullerene in human cells. Toxicol Lett 191(2–3):149–157CrossRefGoogle Scholar
  39. 39.
    Song MM, Song WJ, Bi H, Wang J, Wu WL, Sun J, Yu M (2010) Cytotoxicity and cellular uptake of iron nanowires. Biomaterials 31(7):1509–1517CrossRefGoogle Scholar
  40. 40.
    Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, Lopez-Quintela MA (2007) Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol 127(7):1701–1712Google Scholar
  41. 41.
    Pelka J, Gehrke H, Esselen M, Turk M, Crone M, Brase S, Muller T, Blank H, Send W, Zibat V, Brenner P, Schneider R, Gerthsen D, Marko D (2009) Cellular uptake of platinum nanoparticles in human colon carcinoma cells and their impact on cellular redox systems and DNA integrity. Chem Res Toxicol 22(4):649–659CrossRefGoogle Scholar
  42. 42.
    Bastian S, Busch W, Kuhnel D, Springer A, Meissner T, Holke R, Scholz S, Iwe M, Pompe W, Gelinsky M, Potthoff A, Richter V, Ikonomidou C, Schirmer K (2009) Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells in vitro. Environ Health Perspect 117(4):530–536Google Scholar
  43. 43.
    Kuhnel D, Busch W, Meissner T, Springer A, Potthoff A, Richter V, Gelinsky M, Scholz S, Schirmer K (2009) Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line. Aquat Toxicol 93(2–3):91–99CrossRefGoogle Scholar
  44. 44.
    Marquis BJ, Love SA, Braun KL, Haynes CL (2009) Analytical methods to assess nanoparticle toxicity. Analyst 134(3):425–439CrossRefGoogle Scholar
  45. 45.
    Porter AE, Gass M, Muller K, Skepper JN, Midgley P, Welland M (2007) Visualizing the uptake of C60 to the cytoplasm and nucleus of human monocyte-derived macrophage cells using energy-filtered transmission electron microscopy and electron tomography. Environ Sci Technol 41(8):3012–3017CrossRefGoogle Scholar
  46. 46.
    Thomas PJ, Midgley PA (2002) An introduction to energy-filtered transmission electron microscopy. Top Catal 21(4):109–138CrossRefGoogle Scholar
  47. 47.
    Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, Yuan F, Xi T (2009) Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 9(8):4924–4932CrossRefGoogle Scholar
  48. 48.
    Allabashi R, Stach W, de la Escosura-Muniz A, Liste-Calleja L, Merkoci A (2009) ICP-MS: a powerful technique for quantitative determination of gold nanoparticles without previous dissolving. J Nanopart Res 11(8):2003–2011CrossRefGoogle Scholar
  49. 49.
    Missirlis D, Hubbell JA (2009) In vitro uptake of amphiphilic, hydrogel nanoparticles by J774A.1 cells. J Biomed Mater Res A. doi:10.1002/jbm.a.32648 Google Scholar
  50. 50.
    Suzuki H, Toyooka T, Ibuki Y (2007) Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Environ Sci Technol 41(8):3018–3024CrossRefGoogle Scholar
  51. 51.
    Wang Y, Wu W (2006) In situ evading of phagocytic uptake of stealth solid lipid nanoparticles by mouse peritoneal macrophages. Drug Deliv 13(3):189–192CrossRefGoogle Scholar
  52. 52.
    Xu A, Chai Y, Nohmi T, Hei TK (2009) Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells. Part Fibre Toxicol 6:3CrossRefGoogle Scholar
  53. 53.
    Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2009) Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm 72(2):370–377CrossRefGoogle Scholar
  54. 54.
    Monteiro-Riviere NA, Inman AO (2006) Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44(6):1070–1078CrossRefGoogle Scholar
  55. 55.
    Monteiro-Riviere NA, Inman AO, Zhang LW (2009) Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234(2):222–235CrossRefGoogle Scholar
  56. 56.
    Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168(1):58–74CrossRefGoogle Scholar
  57. 57.
    Worle-Knirsch JM, Pulskamp K, Krug HF (2006) Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6(6):1261–1268CrossRefGoogle Scholar
  58. 58.
    Shukla S, Priscilla A, Banerjee M, Bhonde RR, Ghatak J, Satyam PV, Sastry M (2005) Porous gold nanospheres by controlled transmetalation reaction: a novel material for application in cell imaging. Chem Mater 17(20):5000–5005CrossRefGoogle Scholar
  59. 59.
    Aam BB, Fonnum F (2007) Carbon black particles increase reactive oxygen species formation in rat alveolar macrophages in vitro. Arch Toxicol 81(6):441–446CrossRefGoogle Scholar
  60. 60.
    Davis RR, Lockwood PE, Hobbs DT, Messer RL, Price RJ, Lewis JB, Wataha JC (2007) In vitro biological effects of sodium titanate materials. J Biomed Mater Res B Appl Biomater 83(2):505–511Google Scholar
  61. 61.
    Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1(5):2315–2319CrossRefGoogle Scholar
  62. 62.
    Borm P, Klaessig F, Landry T, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006) Research strategies for safety evaluation of nanomaterials. Part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90(1):23–32CrossRefGoogle Scholar
  63. 63.
    Teeguarden J, Hinderliter P, Orr G, Thrall B, Pounds J (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticles toxicity assessments. Toxicol Sci 95(2):300–312CrossRefGoogle Scholar
  64. 64.
    Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168(2):121–131CrossRefGoogle Scholar
  65. 65.
    Sager T, Porter D, Robinson V, Lindsley W, Schwegler-Berry D, Castranova V (2008) Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology 1(2):118–129CrossRefGoogle Scholar
  66. 66.
    Balbus JM, Maynard AD, Colvin VL, Castranova V, Daston GP, Denison RA, Dreher KL, Goering PL, Goldberg AM, Kulinowski KM, Monteiro-Riviere NA, Oberdorster G, Omenn GS, Pinkerton KE, Ramos KS, Rest KM, Sass JB, Silbergeld EK, Wong BA (2007) Meeting report: hazard assessment for nanoparticles–report from an interdisciplinary workshop. Environ Health Perspect 115(11):1654–1659CrossRefGoogle Scholar
  67. 67.
    Farah AA, Alvarez-Puebla RA, Fenniri H (2008) Chemically stable silver nanoparticle-crosslinked polymer microspheres. J Colloid Interface Sci 319(2):572–576CrossRefGoogle Scholar
  68. 68.
    Skebo JE, Grabinski CM, Schrand AM, Schlager JJ, Hussain SM (2007) Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. Int J Toxicol 26(2):135–141CrossRefGoogle Scholar
  69. 69.
    Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18CrossRefGoogle Scholar
  70. 70.
    Warheit DB, Brock WJ, Lee KP, Webb TR, Reed KL (2005) Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: impact of surface treatments on particle toxicity. Toxicol Sci 88(2):514–524Google Scholar
  71. 71.
    Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172CrossRefGoogle Scholar
  72. 72.
    Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4(11):2163–2169CrossRefGoogle Scholar
  73. 73.
    Warheit DB, Sayes CM, Reed KL (2009) Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures? Environ Sci Technol 43(20):7939–7945CrossRefGoogle Scholar
  74. 74.
    Sayes C, Kenneth L, Subramoney S, Abrams L, Warheit DB (2009) Can in vitro assays substitute for in vivo studies in assessing the pulmonary hazards of fine and nanoscale materials? J Nanopart Res 11:421–431CrossRefGoogle Scholar
  75. 75.
    Buford MC, Hamilton RF Jr, Holian A (2007) A comparison of dispersing media for various engineered carbon nanoparticles. Part Fibre Toxicol 4:6CrossRefGoogle Scholar
  76. 76.
    Porter D, Sriram K, Wolfarth M, Jefferson A, Schwegler-Berry D, Andrew M, Castranova V (2008) A biocompatible medium for nanoparticle dispersion. Nanotoxicology 2(3):144–154CrossRefGoogle Scholar
  77. 77.
    Bihari P, Vippola M, Schultes S, Praetner M, Khandoga AG, Reichel CA, Coester C, Tuomi T, Rehberg M, Krombach F (2008) Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol 5:14CrossRefGoogle Scholar
  78. 78.
    Lynch I, Dawson KA (2008) Protein–nanoparticle interactions. Nano Today 3(1–2):40–47Google Scholar
  79. 79.
    Thomas T, Thomas K, Sadrieh N, Savage N, Adair P, Bronaugh R (2006) Research strategies for safety evaluation of nanomaterials, part VII: evaluating consumer exposure to nanoscale materials. Toxicol Sci 91(1):14–19CrossRefGoogle Scholar
  80. 80.
    Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, ten Voorde SE, Wijnhoven SW, Marvin HJ, Sips AJ (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53(1):52–62CrossRefGoogle Scholar
  81. 81.
    Cheng C, Muller KH, Koziol KK, Skepper JN, Midgley PA, Welland ME, Porter AE (2009) Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials 30(25):4152–4160CrossRefGoogle Scholar
  82. 82.
    Cveticanin J, Joksic G, Leskovac A, Petrovic S, Sobot AV, Neskovic O (2010) Using carbon nanotubes to induce micronuclei and double strand breaks of the DNA in human cells. Nanotechnology 21(1):015102CrossRefGoogle Scholar
  83. 83.
    Patlolla A, Patlolla B, Tchounwou P (2010) Evaluation of cell viability, DNA damage, and cell death in normal human dermal fibroblast cells induced by functionalized multiwalled carbon nanotube. Mol Cell Biochem 338(1–2):225–232CrossRefGoogle Scholar
  84. 84.
    Ravichandran P, Periyakaruppan A, Sadanandan B, Ramesh V, Hall JC, Jejelowo O, Ramesh GT (2009) Induction of apoptosis in rat lung epithelial cells by multiwalled carbon nanotubes. J Biochem Mol Toxicol 23(5):333–344CrossRefGoogle Scholar
  85. 85.
    Reddy AR, Reddy YN, Krishna DR, Himabindu V (2010) Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells. Toxicology 272(1–3):11–16CrossRefGoogle Scholar
  86. 86.
    Walker VG, Li Z, Hulderman T, Schwegler-Berry D, Kashon ML, Simeonova PP (2009) Potential in vitro effects of carbon nanotubes on human aortic endothelial cells. Toxicol Appl Pharmacol 236(3):319–328CrossRefGoogle Scholar
  87. 87.
    Crouzier D, Follot S, Gentilhomme E, Flahaut E, Arnaud R, Dabouis V, Castellarin C, Debouzy JC (2010) Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung. Toxicology 272(1–3):39–45CrossRefGoogle Scholar
  88. 88.
    Elgrabli D, Abella-Gallart S, Robidel F, Rogerieux F, Boczkowski J, Lacroix G (2008) Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbon nanotubes. Toxicology 253(1–3):131–136CrossRefGoogle Scholar
  89. 89.
    Han SG, Andrews R, Gairola CG (2010) Acute pulmonary response of mice to multi-wall carbon nanotubes. Inhal Toxicol 22(4):340–347CrossRefGoogle Scholar
  90. 90.
    Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F, Mertler M, Wiench K, Gamer AO, van Ravenzwaay B, Landsiedel R (2009) Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 112(2):468–481CrossRefGoogle Scholar
  91. 91.
    Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, Leonard S, Battelli L, Schwegler-Berry D, Friend S, Andrew M, Chen BT, Tsuruoka S, Endo M, Castranova V (2010) Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269(2–3):136–147CrossRefGoogle Scholar
  92. 92.
    Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423–428CrossRefGoogle Scholar
  93. 93.
    Ji Z, Zhang D, Li L, Shen X, Deng X, Dong L, Wu M, Liu Y (2009) The hepatotoxicity of multi-walled carbon nanotubes in mice. Nanotechnology 20(44):445101CrossRefGoogle Scholar
  94. 94.
    Mitchell LA, Lauer FT, Burchiel SW, McDonald JD (2009) Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nanotechnol 4(7):451–456CrossRefGoogle Scholar
  95. 95.
    Nygaard UC, Hansen JS, Samuelsen M, Alberg T, Marioara CD, Lovik M (2009) Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. Toxicol Sci 109(1):113–123CrossRefGoogle Scholar
  96. 96.
    Park EJ, Cho WS, Jeong J, Yi J, Choi K, Park K (2009) Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology 259(3):113–121CrossRefGoogle Scholar
  97. 97.
    Patlolla AK, Hussain SM, Schlager JJ, Patlolla S, Tchounwou PB (2010) Comparative study of the clastogenicity of functionalized and nonfunctionalized multiwalled carbon nanotubes in bone marrow cells of Swiss-Webster mice. Environ ToxicolGoogle Scholar
  98. 98.
    Asharani PV, Serina NG, Nurmawati MH, Wu YL, Gong Z, Valiyaveettil S (2008) Impact of multi-walled carbon nanotubes on aquatic species. J Nanosci Nanotechnol 8(7):3603–3609CrossRefGoogle Scholar
  99. 99.
    Cheng J, Chan CM, Veca LM, Poon WL, Chan PK, Qu L, Sun YP, Cheng SH (2009) Acute and long-term effects after single loading of functionalized multi-walled carbon nanotubes into zebrafish (Danio rerio). Toxicol Appl Pharmacol 235(2):216–225Google Scholar
  100. 100.
    Kang S, Mauter MS, Elimelech M (2008) Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ Sci Technol 42(19):7528–7534CrossRefGoogle Scholar
  101. 101.
    Li JJ, Hartono D, Ong CN, Bay BH, Yung LY (2010) Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 31(23):5996–6003CrossRefGoogle Scholar
  102. 102.
    Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5(18):2067–2076CrossRefGoogle Scholar
  103. 103.
    Tarantola M, Schneider D, Sunnick E, Adam H, Pierrat S, Rosman C, Breus V, Sonnichsen C, Basche T, Wegener J, Janshoff A (2009) Cytotoxicity of metal and semiconductor nanoparticles indicated by cellular micromotility. ACS Nano 3(1):213–222CrossRefGoogle Scholar
  104. 104.
    Cho WS, Cho M, Jeong J, Choi M, Cho HY, Han BS, Kim SH, Kim HO, Lim YT, Chung BH (2009) Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 236(1):16–24CrossRefGoogle Scholar
  105. 105.
    Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, Olmedo I, Clos A, Sadagopa Ramanujam VM, Urayama A, Vergara L, Kogan MJ, Soto C (2010) Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun 393(4):649-655Google Scholar
  106. 106.
    Wiwanitkit V, Sereemaspun A, Rojanathanes R (2009) Effect of gold nanoparticles on spermatozoa: the first world report. Fertil Steril 91(1):e7–e8CrossRefGoogle Scholar
  107. 107.
    Farkas J, Christian P, Urrea JA, Roos N, Hassellov M, Tollefsen KE, Thomas KV (2010) Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 96(1):44–52Google Scholar
  108. 108.
    Asharani PV, Hande MP, Valiyaveettil S (2009) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65CrossRefGoogle Scholar
  109. 109.
    AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290CrossRefGoogle Scholar
  110. 110.
    Foldbjerg R, Dang DA, Autrup H (2010) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol (in press)Google Scholar
  111. 111.
    Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179(3):130–139CrossRefGoogle Scholar
  112. 112.
    Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43(15):6046–6051CrossRefGoogle Scholar
  113. 113.
    Miura N, Shinohara Y (2009) Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochem Biophys Res Commun 390(3):733–737CrossRefGoogle Scholar
  114. 114.
    Yang W, Shen C, Ji Q, An H, Wang J, Liu Q, Zhang Z (2009) Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 20(8):085102CrossRefGoogle Scholar
  115. 115.
    Rahman MF, Wang J, Patterson TA, Saini UT, Robinson BL, Newport GD, Murdock RC, Schlager JJ, Hussain SM, Ali SF (2009) Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett 187(1):15–21CrossRefGoogle Scholar
  116. 116.
    Sharma HS, Hussain S, Schlager J, Ali SF, Sharma A (2010) Influence of nanoparticles on blood–brain barrier permeability and brain edema formation in rats. Acta Neurochir Suppl 106:359–364Google Scholar
  117. 117.
    Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5(16):1897–1910CrossRefGoogle Scholar
  118. 118.
    Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J, Ryu DY (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol (in press)Google Scholar
  119. 119.
    Ringwood AH, McCarthy M, Bates TC, Carroll DL (2010) The effects of silver nanoparticles on oyster embryos. Mar Environ Res (in press)Google Scholar
  120. 120.
    Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, Lead JR, Stone V, Fernandes TF, Jepson M, van Aerle R, Tyler CR (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115(2):521–534CrossRefGoogle Scholar
  121. 121.
    Wise JP Sr, Goodale BC, Wise SS, Craig GA, Pongan AF, Walter RB, Thompson WD, Ng AK, Aboueissa AM, Mitani H, Spalding MJ, Mason MD (2010) Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat Toxicol 97(1):34–41CrossRefGoogle Scholar
  122. 122.
    Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242(3):263–269Google Scholar
  123. 123.
    Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43(10):3933–3940Google Scholar
  124. 124.
    Cho SJ, Maysinger D, Jain M, Roder B, Hackbarth S, Winnik FM (2007) Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23(4):1974–1980CrossRefGoogle Scholar
  125. 125.
    Li KG, Chen JT, Bai SS, Wen X, Song SY, Yu Q, Li J, Wang YQ (2009) Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots. Toxicol In Vitro 23(6):1007–1013CrossRefGoogle Scholar
  126. 126.
    Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127(1):143–153CrossRefGoogle Scholar
  127. 127.
    Su Y, He Y, Lu H, Sai L, Li Q, Li W, Wang L, Shen P, Huang Q, Fan C (2009) The cytotoxicity of cadmium-based, aqueous-phase-synthesized quantum dots and its modulation by surface coating. Biomaterials 30(1):19–25Google Scholar
  128. 128.
    Tang M, Xing T, Zeng J, Wang H, Li C, Yin S, Yan D, Deng H, Liu J, Wang M, Chen J, Ruan DY (2008) Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons. Environ Health Perspect 116(7):915–922CrossRefGoogle Scholar
  129. 129.
    Wang L, Nagesha DK, Selvarasah S, Dokmeci MR, Carrier RL (2008) Toxicity of CdSe nanoparticles in Caco-2 cell cultures. J Nanobiotechnology 6:11CrossRefGoogle Scholar
  130. 130.
    Zhang Y, Chen W, Zhang J, Liu J, Chen G, Pope C (2007) In vitro and in vivo toxicity of CdTe nanoparticles. J Nanosci Nanotechnol 7(2):497–503CrossRefGoogle Scholar
  131. 131.
    Chu M, Wu Q, Yang H, Yuan R, Hou S, Yang Y, Zou Y, Xu S, Xu K, Ji A, Sheng L (2010) Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small 6(5):670–678CrossRefGoogle Scholar
  132. 132.
    Hsieh MS, Shiao NH, Chan WH (2009) Cytotoxic effects of CdSe quantum dots on maturation of mouse oocytes, fertilization, and fetal development. Int J Mol Sci 10(5):2122–2135CrossRefGoogle Scholar
  133. 133.
    Mortensen LJ, Oberdorster G, Pentland AP, Delouise LA (2008) In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett 8(9):2779–2787CrossRefGoogle Scholar
  134. 134.
    Kim J, Park Y, Yoon TH, Yoon CS, Choi K (2010) Phototoxicity of CdSe/ZnSe quantum dots with surface coatings of 3-mercaptopropionic acid or tri-n-octylphosphine oxide/gum arabic in Daphnia magna under environmentally relevant UV-B light. Aquat Toxicol 97(2):116–124Google Scholar
  135. 135.
    Herzog E, Byrne HJ, Casey A, Davoren M, Lenz AG, Maier KL, Duschl A, Oostingh GJ (2009) SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro. Toxicol Appl Pharmacol 234(3):378–390CrossRefGoogle Scholar
  136. 136.
    Lindberg HK, Falck GC, Suhonen S, Vippola M, Vanhala E, Catalan J, Savolainen K, Norppa H (2009) Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett 186(3):166–173CrossRefGoogle Scholar
  137. 137.
    Migliore L, Saracino D, Bonelli A, Colognato R, D’Errico MR, Magrini A, Bergamaschi A, Bergamaschi E (2010) Carbon nanotubes induce oxidative DNA damage in RAW 264.7 cells. Environ Mol Mutagen 51(4):294–303Google Scholar
  138. 138.
    Murray AR, Kisin E, Leonard SS, Young SH, Kommineni C, Kagan VE, Castranova V, Shvedova AA (2009) Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 257(3):161–171CrossRefGoogle Scholar
  139. 139.
    Pacurari M, Yin XJ, Zhao J, Ding M, Leonard SS, Schwegler-Berry D, Ducatman BS, Sbarra D, Hoover MD, Castranova V, Vallyathan V (2008) Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 116(9):1211–1217CrossRefGoogle Scholar
  140. 140.
    Wang L, Mercer RR, Rojanasakul Y, Qiu A, Lu Y, Scabilloni JF, Wu N, Castranova V (2010) Direct fibrogenic effects of dispersed single-walled carbon nanotubes on human lung fibroblasts. J Toxicol Environ Health A 73(5):410–422CrossRefGoogle Scholar
  141. 141.
    Witasp E, Shvedova AA, Kagan VE, Fadeel B (2009) Single-walled carbon nanotubes impair human macrophage engulfment of apoptotic cell corpses. Inhal Toxicol 21(Suppl 1):131–136CrossRefGoogle Scholar
  142. 142.
    Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, Biris AS (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4(6):3181-3186Google Scholar
  143. 143.
    Bihari P, Holzer M, Praetner M, Fent J, Lerchenberger M, Reichel CA, Rehberg M, Lakatos S, Krombach F (2010) Single-walled carbon nanotubes activate platelets and accelerate thrombus formation in the microcirculation. Toxicology 269(2–3):148–154CrossRefGoogle Scholar
  144. 144.
    Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Moller P (2009) Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect 117(5):703–708Google Scholar
  145. 145.
    Yang ST, Wang X, Jia G, Gu Y, Wang T, Nie H, Ge C, Wang H, Liu Y (2008) Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol Lett 181(3):182–189CrossRefGoogle Scholar
  146. 146.
    Kang S, Mauter MS, Elimelech M (2009) Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol 43(7):2648–2653CrossRefGoogle Scholar
  147. 147.
    Liu X, Vinson D, Abt D, Hurt RH, Rand DM (2009) Differential toxicity of carbon nanomaterials in Drosophila: larval dietary uptake is benign, but adult exposure causes locomotor impairment and mortality. Environ Sci Technol 43(16):6357–6363Google Scholar
  148. 148.
    Jacobsen NR, Pojana G, White P, Moller P, Cohn CA, Korsholm KS, Vogel U, Marcomini A, Loft S, Wallin H (2008) Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C(60) fullerenes in the FE1-Mutatrade markMouse lung epithelial cells. Environ Mol Mutagen 49(6):476–487CrossRefGoogle Scholar
  149. 149.
    Park EJ, Kim H, Kim Y, Yi J, Choi K, Park K (2010) Carbon fullerenes (C60s) can induce inflammatory responses in the lung of mice. Toxicol Appl Pharmacol 244(2):226–233CrossRefGoogle Scholar
  150. 150.
    Brunet L, Lyon DY, Hotze EM, Alvarez PJ, Wiesner MR (2009) Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ Sci Technol 43(12):4355–4360CrossRefGoogle Scholar
  151. 151.
    Cho M, Fortner JD, Hughes JB, Kim JH (2009) Escherichia coli inactivation by water-soluble, ozonated C60 derivative: kinetics and mechanisms. Environ Sci Technol 43(19):7410–7415Google Scholar
  152. 152.
    Canesi L, Ciacci C, Vallotto D, Gallo G, Marcomini A, Pojana G (2010) In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquat Toxicol 96(2):151–158Google Scholar
  153. 153.
    Ringwood AH, Levi-Polyachenko N, Carroll DL (2009) Fullerene exposures with oysters: embryonic, adult, and cellular responses. Environ Sci Technol 43(18):7136–7141CrossRefGoogle Scholar
  154. 154.
    Tao X, Fortner JD, Zhang B, He Y, Chen Y, Hughes JB (2009) Effects of aqueous stable fullerene nanocrystals (nC60) on Daphnia magna: evaluation of sub-lethal reproductive responses and accumulation. Chemosphere 77(11):1482–1487Google Scholar
  155. 155.
    Yang XY, Edelmann RE, Oris JT (2010) Suspended C60 nanoparticles protect against short-term UV and fluoranthene photo-induced toxicity, but cause long-term cellular damage in Daphnia magna. Aquat Toxicol (in press)Google Scholar
  156. 156.
    Zhu X, Zhu L, Lang Y, Chen Y (2008) Oxidative stress and growth inhibition in the freshwater fish Carassius auratus induced by chronic exposure to sublethal fullerene aggregates. Environ Toxicol Chem 27(9):1979–1985Google Scholar
  157. 157.
    Chen YC, Hsiao JK, Liu HM, Lai IY, Yao M, Hsu SC, Ko BS, Yang CS, Huang DM (2010) The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicol Appl Pharmacol 245(2):272–279CrossRefGoogle Scholar
  158. 158.
    Choi SJ, Oh JM, Choy JH (2009) Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. J Inorg Biochem 103(3):463–471CrossRefGoogle Scholar
  159. 159.
    Eom HJ, Choi J (2009) Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol Lett 187(2):77–83Google Scholar
  160. 160.
    Fahmy B, Cormier SA (2009) Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro 23(7):1365–1371CrossRefGoogle Scholar
  161. 161.
    Falck GC, Lindberg HK, Suhonen S, Vippola M, Vanhala E, Catalan J, Savolainen K, Norppa H (2009) Genotoxic effects of nanosized and fine TiO2. Hum Exp Toxicol 28(6–7):339–352Google Scholar
  162. 162.
    Huang CC, Aronstam RS, Chen DR, Huang YW (2010) Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol In Vitro 24(1):45–55CrossRefGoogle Scholar
  163. 163.
    Hussain S, Thomassen LC, Ferecatu I, Borot MC, Andreau K, Martens JA, Fleury J, Baeza-Squiban A, Marano F, Boland S (2010) Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Part Fibre Toxicol 7:10CrossRefGoogle Scholar
  164. 164.
    Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732CrossRefGoogle Scholar
  165. 165.
    Karlsson HL, Gustafsson J, Cronholm P, Moller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett 188(2):112–118Google Scholar
  166. 166.
    Kim IS, Baek M, Choi SJ (2010) Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J Nanosci Nanotechnol 10(5):3453–3458Google Scholar
  167. 167.
    Midander K, Cronholm P, Karlsson HL, Elihn K, Moller L, Leygraf C, Wallinder IO (2009) Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study. Small 5(3):389–399CrossRefGoogle Scholar
  168. 168.
    Ogami A, Morimoto Y, Myojo T, Oyabu T, Murakami M, Todoroki M, Nishi K, Kadoya C, Yamamoto M, Tanaka I (2009) Pathological features of different sizes of nickel oxide following intratracheal instillation in rats. Inhal Toxicol 21(10):812–818CrossRefGoogle Scholar
  169. 169.
    Tsaousi A, Jones E, Case CP (2010) The in vitro genotoxicity of orthopaedic ceramic (Al2O3) and metal (CoCr alloy) particles. Mutat Res 697(1–2):1–9Google Scholar
  170. 170.
    Zhao J, Xu L, Zhang T, Ren G, Yang Z (2009) Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. Neurotoxicology 30(2):220–230CrossRefGoogle Scholar
  171. 171.
    Gaiser BK, Fernandes TF, Jepson M, Lead JR, Tyler CR, Stone V (2009) Assessing exposure, uptake and toxicity of silver and cerium dioxide nanoparticles from contaminated environments. Environ Health 8(Suppl 1):S2CrossRefGoogle Scholar
  172. 172.
    Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157(5):1619–1625CrossRefGoogle Scholar
  173. 173.
    Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23(6):1116–1122Google Scholar
  174. 174.
    Ma H, Bertsch PM, Glenn TC, Kabengi NJ, Williams PL (2009) Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem 28(6):1324–1330Google Scholar
  175. 175.
    Miller RJ, Lenihan HS, Muller EB, Tseng N, Hanna SK, Keller AA (2010) Impacts of metal oxide nanoparticles on marine phytoplankton. Environ Sci Technol (in press)Google Scholar
  176. 176.
    Zhu X, Wang J, Zhang X, Chang Y, Chen Y (2009) The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 20(19):195103Google Scholar
  177. 177.
    Hassellov M, Readman JW, Ranville JF, Tiede K (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17(5):344–361CrossRefGoogle Scholar
  178. 178.
    Sermsri W, Jarujamrus P, Shiowatana J, Siripinyanond A (2010) Flow field-flow fractionation: a versatile approach for size characterization of alpha-tocopherol-induced enlargement of gold nanoparticles. Anal Bioanal Chem 396(8):3079–3085CrossRefGoogle Scholar
  179. 179.
    Scheffer A, Engelhard C, Sperling M, Buscher W (2008) ICP-MS as a new tool for the determination of gold nanoparticles in bioanalytical applications. Anal Bioanal Chem 390(1):249–252CrossRefGoogle Scholar
  180. 180.
    Liu FK, Lin YY, Wu CH (2005) Highly efficient approach for characterizing nanometer-sized gold particles by capillary electrophoresis. Anal Chim Acta 528(2):249–254CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Nanomaterial Toxicology Group, Indian Institute of Toxicology Research (formerly the Industrial Toxicology Research Centre), Council of Scientific and Industrial Research (CSIR)LucknowIndia

Personalised recommendations