Advertisement

Analytical and Bioanalytical Chemistry

, Volume 398, Issue 2, pp 1061–1076 | Cite as

Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science

  • Silvie ŠvarcováEmail author
  • Eva Kočí
  • Petr Bezdička
  • David Hradil
  • Janka Hradilová
Original Paper

Abstract

The uniqueness and limited amounts of forensic samples and samples from objects of cultural heritage together with the complexity of their composition requires the application of a wide range of micro-analytical methods, which are non-destructive to the samples, because these must be preserved for potential late revision. Laboratory powder X-ray micro-diffraction (micro-XRD) is a very effective non-destructive technique for direct phase analysis of samples smaller than 1 mm containing crystal constituents. It compliments optical and electron microscopy with elemental micro-analysis, especially in cases of complicated mixtures containing phases with similar chemical composition. However, modification of X-ray diffraction to the micro-scale together with its application for very heterogeneous real samples leads to deviations from the standard procedure. Knowledge of both the limits and the phenomena which can arise during the analysis is crucial for the meaningful and proper application of the method. We evaluated basic limits of micro-XRD equipped with a mono-capillary with an exit diameter of 0.1 mm, for example the size of irradiated area, appropriate grain size, and detection limits allowing identification of given phases. We tested the reliability and accuracy of quantitative phase analysis based on micro-XRD data in comparison with conventional XRD (reflection and transmission), carrying out experiments with two-phase model mixtures simulating historic colour layers. Furthermore, we demonstrate the wide use of micro-XRD for investigation of various types of micro-samples (contact traces, powder traps, colour layers) and we show how to enhance data quality by proper choice of experiment geometry and conditions.

Keywords

Powder X-ray micro-diffraction Quantitative phase analysis Limits Forensic Artwork Micro-samples 

Notes

Acknowledgements

The authors thank Renáta Novotná Zemanová and Irma Pakutinskiene for providing artwork samples and for versatile cooperation, and Marek Kotrlý from the Institute of Criminalistics in Prague for providing model forensic samples and for consultation. This work was supported by the Academy of Sciences of the Czech Republic (AV0Z40320502 and M200320901) and by the Ministry of Education, Youth, and Sport (MSM 6046144603).

References

  1. 1.
    Rendle DF (2003) Rigaku J 19–20:11–22Google Scholar
  2. 2.
    Schreiner M, Melcher M, Uhlir K (2007) Anal Bioanal Chem 387:737–747CrossRefGoogle Scholar
  3. 3.
    Cardell C, Guerra I, Romero-Pastor J, Cultrone G, Rodriguez-Navarro A (2009) Anal Chem 81:604–611CrossRefGoogle Scholar
  4. 4.
    Hradil D, Hradilová J, Bezdička P, Švarcová S (2008) X-ray Spectrom 37:376–382CrossRefGoogle Scholar
  5. 5.
    Fitzpatrick RW, Raven MD, Forrester ST (2009) In: Ritz K (ed) Criminal and environmental soil forensics. Springer, NetherlandsGoogle Scholar
  6. 6.
    Šímová V, Bezdička P, Hradilová J, Hradil D, Grygar T (2005) Powder Diffr 20(3):224–229CrossRefGoogle Scholar
  7. 7.
    Kotrlý M (2007) Z Kristallogr 222:193–198CrossRefGoogle Scholar
  8. 8.
    Vandenabeele P, Edwards HGM, Moens L (2007) Chem Rev 107:675–686CrossRefGoogle Scholar
  9. 9.
    Bacci M, Fabbri M, Picollo M, Porcinai S (2001) Anal Chim Acta 446:15–21CrossRefGoogle Scholar
  10. 10.
    Rosi F, Daveri A, Miliani C, Verri G, Benedetti P, Piqué F, Brunetti BG, Sgamellotti A (2009) Anal Bioanal Chem 395:2097–2106CrossRefGoogle Scholar
  11. 11.
    Goehner RP, Eatough MO, Michael JR, Tissot RG (2000) In: Chung FH (ed) Industrial applications of X-Ray diffraction. Marcel Dekker, Inc, New YorkGoogle Scholar
  12. 12.
    Hoffman SA, Thiel DJ, Bilderback DH (1994) Nucl Instrum Meth Phys Res A 347:384–389CrossRefGoogle Scholar
  13. 13.
    Kempson IM, Kirkbride KP, Skinner WM, Coumbaros J (2005) Talanta 67:286–303CrossRefGoogle Scholar
  14. 14.
    Dooryhée E, Anne M, Bardiès I, Hodeau JL, Martinetto P, Rondot S, Salomon J, Vaughan GBM, Walter P (2005) Appl Phys A 81:663–667CrossRefGoogle Scholar
  15. 15.
    Salvadó N, Pradell T, Pantos E, Papiz MZ, Molera J, Seco M, Vendrell-Saz M (2002) J Synchrotron Rad 9:215–222CrossRefGoogle Scholar
  16. 16.
    JCPDS PDF-2 database (2004) International centre for diffraction data, Newtown Square, PA, USA. release 54Google Scholar
  17. 17.
    ICSD database (2008) FIZ Karlsruhe, Germany, release 2008/2Google Scholar
  18. 18.
    Cambridge structure database (2010) The cambridge crystallographic data centre, Cambridge, UK. http://www.ccdc.cam.ac.uk. Accessed 5 May 2010
  19. 19.
    Keaney A, Ruffell A, McKinley J (2009) In: Ritz K (ed) Criminal and environmental soil forensics. Springer, NetherlandsGoogle Scholar
  20. 20.
    Švarcová S, Hradil D, Hradilová J, Kočí E, Bezdička P (2009) Anal Bioanal Chem 395:2037–2050CrossRefGoogle Scholar
  21. 21.
    Hradil D, Grygar T, Hradilová J, Bezdička P, Grünwaldová V, Fogaš I, Miliani C (2007) J Cult Herit 8:377–386CrossRefGoogle Scholar
  22. 22.
    Rietveld HM (1969) J Appl Cryst 2:65–71CrossRefGoogle Scholar
  23. 23.
    Rodríguez-Carvajal J (2001) An introduction to the program fullprof 2000, user manualGoogle Scholar
  24. 24.
    Brindley GW (1945) Phil Mag 36:347–369Google Scholar
  25. 25.
    Rendle DF (2000) In: Chung FH (ed) Industrial applications of X-Ray diffraction. Marcel Dekker, Inc, New YorkGoogle Scholar
  26. 26.
    Bezdička P, Kotulanová E (2007) Mater Struct 14:150–151Google Scholar
  27. 27.
    McCusker LB, Von Dreele RB, Cox DE, Louër D, Scardi P (1999) J Appl Cryst 32:36–50CrossRefGoogle Scholar
  28. 28.
    Grygar T, Hradilová J, Hradil D, Bezdička P, Bakardjieva S (2003) Anal Bioanal Chem 375:1154–1160Google Scholar
  29. 29.
    Buhrke VE, Jenkins R, Smith DK (1998) Preparation of specimens for X-ray fluorescence and X-ray diffraction analysis. Wiley–VCH, New YorkGoogle Scholar
  30. 30.
    Elton NJ, Salt PD (1996) Powder Diffr 11:218–229Google Scholar
  31. 31.
    Elton NJ, Smith DK (2000) In: Chung FH (ed) Industrial applications of X-Ray diffraction. Marcel Dekker, Inc, New YorkGoogle Scholar
  32. 32.
    Srodon J, Drits VA, McCarty DK, Hsieh JCC, Eberl DD (2001) Clays Clay Miner 49:514–528CrossRefGoogle Scholar
  33. 33.
    Welcomme E, Walter P, Bleuet P, Hodeau JL, Dooryhee E, Martinetto P, Menu M (2007) Appl Phys A 89:825–832CrossRefGoogle Scholar
  34. 34.
    Eastaugh E, Walsh V, Chaplin T, Siddal R (2004) The pigment compendium–a dictionary of historical pigments. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Silvie Švarcová
    • 1
    • 2
    Email author
  • Eva Kočí
    • 1
  • Petr Bezdička
    • 1
    • 2
  • David Hradil
    • 1
    • 2
  • Janka Hradilová
    • 2
  1. 1.Institute of Inorganic Chemistry of the AS CR, v.v.i., ALMA laboratoryHusinec-ŘežCzech Republic
  2. 2.Academy of Fine Arts in Prague, ALMA laboratoryPraha 7Czech Republic

Personalised recommendations