Analytical and Bioanalytical Chemistry

, Volume 399, Issue 1, pp 171–181 | Cite as

Nanostructured materials in potentiometry

  • Ali Düzgün
  • Gustavo A. Zelada-Guillén
  • Gastón A. Crespo
  • Santiago Macho
  • Jordi Riu
  • F. Xavier Rius


Potentiometry is a very simple electrochemical technique with extraordinary analytical capabilities. It is also well known that nanostructured materials display properties which they do not show in the bulk phase. The combination of the two fields of potentiometry and nanomaterials is therefore a promising area of research and development. In this report, we explain the fundamentals of potentiometric devices that incorporate nanostructured materials and we highlight the advantages and drawbacks of combining nanomaterials and potentiometry. The paper provides an overview of the role of nanostructured materials in the two commonest potentiometric sensors: field-effect transistors and ion-selective electrodes. Additionally, we provide a few recent examples of new potentiometric sensors that are based on receptors immobilized directly onto the nanostructured material surface. Moreover, we summarize the use of potentiometry to analyze processes involving nanostructured materials and the prospects that the use of nanopores offer to potentiometry. Finally, we discuss several difficulties that currently hinder developments in the field and some future trends that will extend potentiometry into new analytical areas such as biology and medicine.


Potentiometry Nanostructured materials Sensors Field-effect transistors Ion-selective electrodes Nanoparticles Nanotubes Nanowires Graphene 



We thank the Spanish Ministry of Science and Innovation, MICINN, for supporting this work with project grant CTQ2007-67570.


  1. 1.
    Janata J (2004) Electroanalysis 16:1831–1835CrossRefGoogle Scholar
  2. 2.
    Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Science 287:622–625CrossRefGoogle Scholar
  3. 3.
    Pretsch E (2007) Trends Anal Chem 26:46–51CrossRefGoogle Scholar
  4. 4.
    Bakker E, Chumbimuni-Torres K (2008) J Braz Chem Soc 19:621–629CrossRefGoogle Scholar
  5. 5.
    Janata J (2009) Principles of chemical sensors. Springer, HeidelbergCrossRefGoogle Scholar
  6. 6.
    Krüger M (2001) Appl Phys Lett 78:1291–1294CrossRefGoogle Scholar
  7. 7.
    Gansen EJ, Rowe MA, Greene MB, Rosenberg D, Harvey TE, Su MY, Hadfield RH, Nam SW, Mirin RP (2007) Nat Photon 1:585–588CrossRefGoogle Scholar
  8. 8.
    Luo XL, Xu JJ, Zhao W, Chen HY (2004) Biosens Bioelectron 19:1295–1300CrossRefGoogle Scholar
  9. 9.
    Haddon RC (1996) J Am Chem Soc 118:3041–3042CrossRefGoogle Scholar
  10. 10.
    Kobayashi SI, Mori S, Lida S, Ando H, Takenobu T, Taguchi Y, Fujiwara A, Taninaka A, Shinohara H, Iwasa Y (2003) J Am Chem Soc 125:8116–8117CrossRefGoogle Scholar
  11. 11.
    Bondavalli P, Legagneux P, Privat D (2009) Sens Actuators B 140:304–318CrossRefGoogle Scholar
  12. 12.
    Cid CC, Jimenez-Cadena G, Riu J, Maroto A, Rius FX, Batema GD, Van Koten G (2009) Sens Actuators B 141:97–103CrossRefGoogle Scholar
  13. 13.
    Kauffman DR, Star A (2008) Angew Chem Int Ed 47:6550–6570CrossRefGoogle Scholar
  14. 14.
    Kauffman DR, Star A (2008) Chem Soc Rev 37:1197–1206CrossRefGoogle Scholar
  15. 15.
    Villamizar RA, Maroto A, Rius FX, Inza I, Figueras MJ (2008) Biosens Bioelectron 24:279–283CrossRefGoogle Scholar
  16. 16.
    Wijaya IPM, Nie TJ, Gandhi S, Boro R, Palaniappan A, Hau GW, Rodríguez I, Suri CR, Mhaisalkar SG (2010) Lab Chip 10:634–638CrossRefGoogle Scholar
  17. 17.
    Cui Y, Wei Q, Park H, Lieber CM (2001) Science 293:1289–1292CrossRefGoogle Scholar
  18. 18.
    Stern E, Vacic A, Reed MA (2008) IEEE Trans Electron Devices 55:3119–3130CrossRefGoogle Scholar
  19. 19.
    Huang XJ, Choi YK (2007) Sens Actuators B 122:659–671CrossRefGoogle Scholar
  20. 20.
    Xia F, Farmer DB, Lin Y, Avouris P (2010) Nano Lett 10:715–718CrossRefGoogle Scholar
  21. 21.
    Tang YB, Lee CS, Chen ZH, Yuan GD, Kang ZH, Luo LB, Song HS, Liu Y, He ZB, Zhang WJ, Bello I, Lee ST (2009) Nano Lett 9:1374–1377CrossRefGoogle Scholar
  22. 22.
    Dan Y, Lu Y, Kybert NJ, Luo Z, Johnson ATC (2009) Nano Lett 9:1472–1475CrossRefGoogle Scholar
  23. 23.
    Ang PK, Chen W, Wee ATS, Loh KP (2008) J Am Chem Soc 130:14392–14393CrossRefGoogle Scholar
  24. 24.
    Ohno Y, Maehashi K, Yamashiro Y, Matsumoto K (2009) Nano Lett 9:3318–3322CrossRefGoogle Scholar
  25. 25.
    Bakker E, Pretsch E (2008) Trends Anal Chem 27:612–618CrossRefGoogle Scholar
  26. 26.
    Fibbioli M, Morf WE, Badertscher M, de Rooij NF, Pretsch E (2000) Electroanalysis 12:1286–1292CrossRefGoogle Scholar
  27. 27.
    Bobacka J, Ivaska A, Lewenstam A (2008) Chem Rev 108:329–351CrossRefGoogle Scholar
  28. 28.
    Gyurcsányi RE, Nybäck A-S, Ivaska A, Tóth K, Nagy G (1998) Analyst 123:1339–1344CrossRefGoogle Scholar
  29. 29.
    Anastasova-Ivanova S, Mattinen U, Radu A, Bobacka J, Lewenstam A, Migdalski J, Danielewski M, Diamond D (2010) Sens Actuators B 146:199–205CrossRefGoogle Scholar
  30. 30.
    Lindner E, Buck RP (2000) Anal Chem 72:336A–345ACrossRefGoogle Scholar
  31. 31.
    Bobacka J (2006) Electroanalysis 18:7–18CrossRefGoogle Scholar
  32. 32.
    Michalska A (2006) Anal Bioanal Chem 384:391–406CrossRefGoogle Scholar
  33. 33.
    Sutter J, Lindner E, Gyurcsanyi RE, Pretsch E (2004) Anal Bioanal Chem 380:7–14CrossRefGoogle Scholar
  34. 34.
    Sutter J, Radu A, Peper S, Bakker E, Pretsch E (2004) Anal Chim Acta 523:53–59CrossRefGoogle Scholar
  35. 35.
    Lindfors TJ (2009) Solid State Electrochem 13:77–89CrossRefGoogle Scholar
  36. 36.
    Fouskaki M, Chaniotakis N (2008) Analyst 133:1072–1075CrossRefGoogle Scholar
  37. 37.
    Fierke MA, Lai CZ, Buhlmann P, Stein A (2010) Anal Chem 82:680–688CrossRefGoogle Scholar
  38. 38.
    Zhu Z, Zhang J, Zhu J, Lu W, Zi J (2007) IEEE Sens J 7:38–42CrossRefGoogle Scholar
  39. 39.
    Crespo GA, Macho S, Rius FX (2008) Anal Chem 80:1316–1322CrossRefGoogle Scholar
  40. 40.
    Ampurdanés J, Crespo GA, Maroto A, Sarmentero MA, Ballester P, Rius FX (2009) Biosens Bioelectron 25:344–349CrossRefGoogle Scholar
  41. 41.
    Crespo GA, Gugsa D, Macho S, Rius FX (2009) Anal Bioanal Chem 395:2371–2376CrossRefGoogle Scholar
  42. 42.
    Mousavi Z, Bobacka J, Lewenstam A, Ivaska A (2009) J Electroanal Chem 633:246–252CrossRefGoogle Scholar
  43. 43.
    Crespo GA, Macho S, Bobacka J, Rius FX (2009) Anal Chem 81:676–681CrossRefGoogle Scholar
  44. 44.
    Zhu J, Qin Y, Zhang Y (2009) Electrochem Commun 11:1684–1687CrossRefGoogle Scholar
  45. 45.
    Abbaspour A, Izadyar A (2007) Talanta 71:887–892CrossRefGoogle Scholar
  46. 46.
    Li S, Yang W, Chen M, Gao J, Kang J, Qi Y (2005) Mater Chem Phys 90:262–269CrossRefGoogle Scholar
  47. 47.
    Song W, Wu C, Yin H, Liu X, Sa P, Hu J (2008) Anal Lett 41:2844–2859CrossRefGoogle Scholar
  48. 48.
    Düzgün A, Maroto A, Mairal T, O’Sullivan C, Rius FX (2010) Analyst 135:1037–1041CrossRefGoogle Scholar
  49. 49.
    Zhou Y, Yu B, Guiseppi-Elie A, Sergeyev V, Levon K (2009) Biosens Bioelectron 24:3275–3280CrossRefGoogle Scholar
  50. 50.
    Zelada-Guillén GA, Riu J, Düzgün A, Rius FX (2009) Angew Chem Int Ed 48:7334–7337CrossRefGoogle Scholar
  51. 51.
    Chumbimuni-Torres KY, Wang J (2009) Analyst 134:1614–1617CrossRefGoogle Scholar
  52. 52.
    Ngeontae W, Janrungroatsakul W, Maneewattanapinyo P, Ekgasit S, Aeungmaitrepirom W, Tuntulani T (2009) Sens Actuators B 137:320–326CrossRefGoogle Scholar
  53. 53.
    Chumbimuni-Torres KY, Bakker E, Wang J (2009) Electrochem Commun 11:1964–1967CrossRefGoogle Scholar
  54. 54.
    Gyurcsányi RE (2008) Trends Anal Chem 27:627–639CrossRefGoogle Scholar
  55. 55.
    Shim JH, Kim J, Cha GS, Nam H, White RJ, White HS, Brown RB (2007) Anal Chem 79:3568–3574CrossRefGoogle Scholar
  56. 56.
    Studer A, Han X, Winkler FK, Tiefenauer LX (2009) Colloids Surf B 73:325–331CrossRefGoogle Scholar
  57. 57.
    Sperling RA, Parak WJ (2010) Philos Trans R Soc Lond A 368:1333–1383CrossRefGoogle Scholar
  58. 58.
    Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Angew Chem Int Ed 49:3280–3294Google Scholar
  59. 59.
    Frasco MF, Chaniotakis N (2010) Anal Bioanal Chem 396:229–240CrossRefGoogle Scholar
  60. 60.
    Knopp D, Tang D, Niessner R (2009) Anal Chim Acta 647:14–30CrossRefGoogle Scholar
  61. 61.
    Huang CC, Chiang C-K, Lin Z-H, Lee K-H, Chang H-T (2008) Anal Chem 80:1497–1504CrossRefGoogle Scholar
  62. 62.
    Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Angew Chem Int Ed 49:2114–2138CrossRefGoogle Scholar
  63. 63.
    Zhao Y-L, Stoddart JF (2009) Acc Chem Res 42:1161–1171CrossRefGoogle Scholar
  64. 64.
    Wang J, Lin Y (2008) Trends Anal Chem 27:619–626CrossRefGoogle Scholar
  65. 65.
    Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105–1136CrossRefGoogle Scholar
  66. 66.
    Suspène C, Barattin R, Celle C, Carella A, Simonato J-P (2010) J Phys Chem C 114:3924–3931CrossRefGoogle Scholar
  67. 67.
    Simpkins BS, Mccoy KM, Whitman LJ, Pehrsson PE (2007) Nanotechnology 18:355301CrossRefGoogle Scholar
  68. 68.
    Park I, Li ZY, Pisano AP, Williams RS (2007) Nano Lett 7:3106–3111CrossRefGoogle Scholar
  69. 69.
    Skinner K, Dwyer C, Washburn S (2006) Nano Lett 6:2758–2762CrossRefGoogle Scholar
  70. 70.
    Sadik OA, Aluoch AO, Zhou A (2009) Biosens Bioelectron 24:2749–2765CrossRefGoogle Scholar
  71. 71.
    Nicu L, Leichle T (2008) J Appl Phys 104:111101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ali Düzgün
    • 1
  • Gustavo A. Zelada-Guillén
    • 1
  • Gastón A. Crespo
    • 1
  • Santiago Macho
    • 1
  • Jordi Riu
    • 1
  • F. Xavier Rius
    • 1
  1. 1.Department of Analytical and Organic ChemistryUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations